ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-07-06
    Description: Regulatory T cells (Tregs) that express the transcription factor Foxp3 are critical for regulating intestinal inflammation. Candidate microbe approaches have identified bacterial species and strain-specific molecules that can affect intestinal immune responses, including species that modulate Treg responses. Because neither all humans nor mice harbor the same bacterial strains, we posited that more prevalent factors exist that regulate the number and function of colonic Tregs. We determined that short-chain fatty acids, gut microbiota-derived bacterial fermentation products, regulate the size and function of the colonic Treg pool and protect against colitis in a Ffar2-dependent manner in mice. Our study reveals that a class of abundant microbial metabolites underlies adaptive immune microbiota coadaptation and promotes colonic homeostasis and health.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807819/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3807819/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Smith, Patrick M -- Howitt, Michael R -- Panikov, Nicolai -- Michaud, Monia -- Gallini, Carey Ann -- Bohlooly-Y, Mohammad -- Glickman, Jonathan N -- Garrett, Wendy S -- F32 DK095506/DK/NIDDK NIH HHS/ -- F32 DK098826/DK/NIDDK NIH HHS/ -- F32DK095506/DK/NIDDK NIH HHS/ -- F32DK098826/DK/NIDDK NIH HHS/ -- K08 AI078942/AI/NIAID NIH HHS/ -- K08AI078942/AI/NIAID NIH HHS/ -- P30 DK034854/DK/NIDDK NIH HHS/ -- R01 CA154426/CA/NCI NIH HHS/ -- R01 GM099537/GM/NIGMS NIH HHS/ -- R01CA154426/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 2013 Aug 2;341(6145):569-73. doi: 10.1126/science.1241165. Epub 2013 Jul 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23828891" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Bacteria/*metabolism ; Colitis/metabolism ; Colon/*microbiology ; DNA-Binding Proteins/genetics ; Fatty Acids, Volatile/administration & dosage/*metabolism ; Fermentation ; Germ-Free Life ; *Homeostasis ; Humans ; *Metagenome ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Receptors, G-Protein-Coupled/genetics/metabolism ; T-Lymphocytes, Regulatory/*physiology/transplantation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-02-06
    Description: The intestinal epithelium forms an essential barrier between a host and its microbiota. Protozoa and helminths are members of the gut microbiota of mammals, including humans, yet the many ways that gut epithelial cells orchestrate responses to these eukaryotes remain unclear. Here we show that tuft cells, which are taste-chemosensory epithelial cells, accumulate during parasite colonization and infection. Disruption of chemosensory signaling through the loss of TRMP5 abrogates the expansion of tuft cells, goblet cells, eosinophils, and type 2 innate lymphoid cells during parasite colonization. Tuft cells are the primary source of the parasite-induced cytokine interleukin-25, which indirectly induces tuft cell expansion by promoting interleukin-13 production by innate lymphoid cells. Our results identify intestinal tuft cells as critical sentinels in the gut epithelium that promote type 2 immunity in response to intestinal parasites.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Howitt, Michael R -- Lavoie, Sydney -- Michaud, Monia -- Blum, Arthur M -- Tran, Sara V -- Weinstock, Joel V -- Gallini, Carey Ann -- Redding, Kevin -- Margolskee, Robert F -- Osborne, Lisa C -- Artis, David -- Garrett, Wendy S -- F31DK105653/DK/NIDDK NIH HHS/ -- F32DK098826/DK/NIDDK NIH HHS/ -- R01 CA154426/CA/NCI NIH HHS/ -- R01 GM099531/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 2016 Mar 18;351(6279):1329-33. doi: 10.1126/science.aaf1648. Epub 2016 Feb 4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. ; Division of Gastroenterology, Tufts Medical Center, Boston, MA 02111, USA. ; Monell Chemical Senses Center, Philadelphia, PA 19104, USA. ; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medical College, Cornell University, New York, NY 10021, USA. ; Departments of Immunology and Infectious Diseases and Genetics and Complex Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA. Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, MA 02142, USA. Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. wgarrett@hsph.harvard.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26847546" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chemoreceptor Cells/*immunology ; Eosinophils/immunology ; Goblet Cells/immunology ; Helminthiasis/immunology/parasitology ; Helminths/immunology ; Immunity, Mucosal ; Interleukin-13/immunology ; Interleukin-17/immunology ; Intestinal Diseases, Parasitic/*immunology/parasitology ; Intestinal Mucosa/*immunology/*parasitology ; Mice ; Mice, Inbred C57BL ; Mice, Mutant Strains ; Microbiota/*immunology ; Protein-Serine-Threonine Kinases/immunology ; Protozoan Infections/immunology/parasitology ; Signal Transduction ; TRPM Cation Channels/*immunology ; Taste ; Transducin/genetics/immunology ; Tritrichomonas/immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 2015-06-24
    Description: Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet−/− Rag2−/− mice. By varying the number of strains...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...