ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-04-24
    Description: The circulation patterns and the impact of the lateral export of nutrients and organic matter off NW Africa are examined by applying an inverse model to two hydrographic datasets gathered in fall 2002 and spring 2003. These estimates show significant changes in the circulation patterns at central levels from fall to spring, particularly in the southern boundary of the domain related to zonal shifts of the Cape Verde Frontal Zone. Southward transports at the surface and central levels at 26∘ N are 5.6±1.9 Sv in fall and increase to 6.7±1.6 Sv in spring; westward transports at 26∘ W are 6.0±1.8 Sv in fall and weaken to 4.0±1.8 Sv in spring. At 21∘ N a remarkable temporal variability is obtained, with a northward mass transport of 4.4±1.5 Sv in fall and a southward transport of 5.2±1.6 Sv in spring. At intermediate levels important spatiotemporal differences are also observed, and it must be highlighted that a northward net mass transport of 2.0±1.9 Sv is obtained in fall at both the south and north transects. The variability in the circulation patterns is also reflected in lateral transports of inorganic nutrients (SiO2, NO3, PO4) and dissolved organic carbon (DOC). Hence, in fall the area acts as a sink of inorganic nutrients and a source of DOC, while in spring it reverses to a source of inorganic nutrients and a sink of DOC. A comparison between nutrient fluxes from both in situ observations and numerical modeling output is finally addressed.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-26
    Description: The Coastal-Ocean Carbon Exchange in the Canary Region Project (COCA) arises in order to analyse and get to understand the impact of lateral export of nutrients and organic matter from the highly productive Coastal Upwelling System off NW Africa in the biogeochemical cycles during two different seasons. The circulation patterns off NW African Upwelling System are examined by applying an inverse model to two hydrographic datasets gathered in fall 2002 and spring 2003. The mass transports estimated by model are consistent with the thermal wind equation and the conservation of mass in a closed volume. Besides, the Ekman transport and the freshwater flux are also considered. These estimates show a seasonal variability in the circulation patterns at central levels, particularly in the southern boundary of the domain, where the Cape Verde Frontal Zone is located. In the beginning of fall, this circulation is deeper and northward with a net transport of 6 ± 3 Sv and, in the late spring, it is shallower and southward with a similar intensity. At intermediate levels important differences are also observed between the two seasons. In fall, the Antarctic Intermediate Waters reaches higher latitudes with 2 ± 2 Sv flowing northward. During spring, there is no significant northward flow of AAIW. However, there is a moderate westward mass transport which impacts both the lateral transports of inorganic nutrients and organic matter at intermediate layers and also the shallowest lateral transports of organic matter. Seasonal variability in circulation patterns are also reflected in lateral transports of inorganic nutrients and dissolved organic carbon. Therefore, the changes in the circulation patterns between the two seasons have allowed us to assess the variability in the contributions of SiO2, NO3, PO4 and DOC from the first to the second season. In fall, the transports are mainly northward from the south with −0.80 ± 0.34, −1.11 ± 0.47 and −0.07 ± 0.03 kmol s-1 of SiO2, NO3 and PO4, respectively. In spring, however, lateral transports off-shore are favoured with 0.75 ± 0.37, 1.34 ± 0.66 and 0.08 ± 0.04 kmol s-1 of SiO2, NO3 and PO4, respectively. This westward transport stimulates in turn an intensified westward DOC transport at shallow layers, specifically 0.50 ± 0.25 x 108 mol C day-1.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...