ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: No abstract available
    Keywords: Life Sciences (General)
    Type: The Physiologist (ISSN 0031-9376); Volume 35; 1 Suppl; S80-3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Our objective was to understand how weight bearing with varying gravitational fields affects blood perfusion in the sole of the foot. Human subjects underwent whole body tilting at four angles: upright [1 gravitational vector from head to foot (Gz)], 22 degrees (0.38 Gz), 10 degrees (0.17 Gz), and supine (0 Gz), simulating the gravitational fields of Earth, Mars, Moon, and microgravity, respectively. Cutaneous capillary blood flow was monitored on the plantar surface of the heel by laser Doppler flowmetry while weight-bearing load was measured. At each tilt angle, subjects increased weight bearing on one foot in graded load increments of 1 kg beginning with zero. The weight bearing at which null flow first occurred was determined as the closing load. Subsequently, the weight bearing was reduced in reverse steps until blood flow returned (opening load). Mean closing loads for simulated Earth gravity, Mars gravity, Moon gravity, and microgravity were 9.1, 4.6, 4.4, and 3.6 kg, respectively. Mean opening loads were 7.9, 4.1, 3.5, and 3.1 kg, respectively. Mean arterial pressures in the foot (MAP(foot)) calculated for each simulated gravitational field were 192, 127, 106, and 87 mmHg, respectively. Closing load and opening load were significantly correlated with MAP(foot) (r =0.70, 0.72, respectively) and were significantly different (P 〈 0.001) from each other. The data suggest that decreased local arterial pressure in the foot lowers tolerance to external compression. Consequently, the human foot sole may be more prone to cutaneous ischemia during load bearing in microgravity than on Earth.
    Keywords: Life Sciences (General)
    Type: The American journal of physiology (ISSN 0002-9513); Volume 271; 4 Pt 2; R961-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: Investigation of the influence of human physical activity on bone functional adaptation requires long-term histories of gait-related ground reaction force (GRF). Towards a simpler portable GRF measurement, we hypothesized that: 1) the reciprocal of foot-ground contact time (1/tc); or 2) the reciprocal of stride-period-normalized contact time (T/tc) predict peak vertical and horizontal GRF, loading rates, and horizontal speed during gait. GRF data were collected from 24 subjects while they walked and ran at a variety of speeds. Linear regression and ANCOVA determined the dependence of gait parameters on 1/tc and T/tc, and prediction SE. All parameters were significantly correlated to 1/tc and T/tc. The closest pooled relationship existed between peak running vertical GRF and T/tc (r2 = 0.896; SE = 3.6%) and improved with subject-specific regression (r2 = 0.970; SE = 2.2%). We conclude that temporal measures can predict force parameters of gait and may represent an alternative to direct GRF measurements for determining daily histories of habitual lower limb loading quantities necessary to quantify a bone remodeling stimulus.
    Keywords: Life Sciences (General)
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 29; 4; 540-7
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: To assess the usefulness of intramuscular pressure (IMP) measurement for studying muscle function during gait, IMP was recorded in the soleus and tibialis anterior muscles of 10 volunteers during treadmill walking and running by using transducer-tipped catheters. Soleus IMP exhibited single peaks during late-stance phase of walking [181 +/- 69 (SE) mmHg] and running (269 +/- 95 mmHg). Tibialis anterior IMP showed a biphasic response, with the largest peak (90 +/- 15 mmHg during walking and 151 +/- 25 mmHg during running) occurring shortly after heel strike. IMP magnitude increased with gait speed in both muscles. Linear regression of soleus IMP against ankle joint torque obtained by a dynamometer produced linear relationships (n = 2, r = 0.97 for both). Application of these relationships to IMP data yielded estimated peak soleus moment contributions of 0.95-1.65 N . m/kg during walking, and 1.43-2.70 N . m/kg during running. Phasic elevations of IMP during exercise are probably generated by local muscle tissue deformations due to muscle force development. Thus profiles of IMP provide a direct, reproducible index of muscle function during locomotion in humans.
    Keywords: Life Sciences (General)
    Type: Journal of applied physiology (Bethesda, Md. : 1985) (ISSN 8750-7587); Volume 84; 6; 1976-81
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: Leg compression devices have been used extensively by patients to combat chronic venous insufficiency and by astronauts to counteract orthostatic intolerance following spaceflight. However, the effects of elastic and inelastic leggings on the calf muscle pump have not been compared. The purpose of this study was to compare in normal subjects the effects of elastic and inelastic compression on leg intramuscular pressure (IMP), an objective index of calf muscle pump function. IMP in soleus and tibialis anterior muscles was measured with transducer-tipped catheters. Surface compression between each legging and the skin was recorded with an air bladder. Subjects were studied under three conditions: (1) control (no legging), (2) elastic legging, and (3) inelastic legging. Pressure data were recorded for each condition during recumbency, sitting, standing, walking, and running. Elastic leggings applied significantly greater surface compression during recumbency (20 +/- 1 mm Hg, mean +/- SE) than inelastic leggings (13 +/- 2 mm Hg). During recumbency, elastic leggings produced significantly higher soleus IMP of 25 +/- 1 mm Hg and tibialis anterior IMP of 28 +/- 1 mm Hg compared to 17 +/- 1 mm Hg and 20 +/- 2 mm Hg, respectively, generated by inelastic leggings and 8 +/- 1 mm Hg and 11 +/- 1 mm Hg, respectively, without leggings. During sitting, walking, and running, however, peak IMPs generated in the muscular compartments by elastic and inelastic leggings were similar. Our results suggest that elastic leg compression applied over a long period in the recumbent posture may impede microcirculation and jeopardize tissue viability.(ABSTRACT TRUNCATED AT 250 WORDS).
    Keywords: Life Sciences (General)
    Type: Annals of vascular surgery (ISSN 0890-5096); Volume 8; 6; 543-8
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: The high cost and long times required to develop research packages for space flight can often be offset by using ground test techniques. This paper describes a space shuttle launch and reentry simulating using the NASA Ames Research Center's 20G centrifuge facility. The combined G-forces and acoustic environment during shuttle launch and landing were simulated to evaluate the effect on a payload of laboratory rates. The launch G force and acoustic profiles are matched to actual shuttle launch data to produce the required G-forces and acoustic spectrum in the centrifuge test cab where the rats were caged on a free-swinging platform. For reentry, only G force is simulated as the aero-acoustic noise is insignificant compared to that during launch. The shuttle G-force profiles of launch and landing are achieved by programming the centrifuge drive computer to continuously adjust centrifuge rotational speed to obtain the correct launch and landing G forces. The shuttle launch acoustic environment is simulated using a high-power, low-frequency audio system. Accelerometer data from STS-56 and microphone data from STS-1 through STS-5 are used as baselines for the simulations. This paper provides a description of the test setup and the results of the simulation with recommendations for follow-on simulations.
    Keywords: SPACE TRANSPORTATION
    Type: NASA. Goddard Space Flight Center, Eighteenth Space Simulation Conference: Space Mission Success Through Testing; p 349-371
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Elevated calf compliance may contribute to orthostatic intolerance following space flight and bed rest. Calf venous compliance is measured conventionally with venous occlusion plethysmography in supine subjects. With this well-established technique, subjects undergo inflation of a pressure cuff around the thigh just above the knee, which increases calf venous pressure. A plethysmograph simultaneously measures calf volume elevation. Compliance equals calf volume elevation per mm Hg thigh occlusion (calf venous) pressure in relaxed legs of the supine subjects. Compliance may also be measured during stepwise head-up tilt (HUT) as calf volume elevation per mm Hg gravitational venous pressure elevation produced by HUT. However, during HUT on a tilt table with a footplate, calf muscles activate to counteract gravity: this is an obvious and natural response to gravitational force. Such muscle activation conceivably could reduce calf compliance, yet relatively little calf muscle activation occurs during HUT and orthostasis (less than 10% of maximal voluntary levels; 4, 8, 10). Also, this activation produces minimal calf volume change (less than 0.3%; 3). Therefore, we hypothesized that calf compliance measured with HUT equals that measured with supine venous occlusion.
    Keywords: Aerospace Medicine
    Type: Journal of Gravitational Physiology, Volume 2, No. 1; 21-22
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-27
    Description: Theoretical models and experimental studies of bone remodeling suggest that bone density and structure are influenced by local cyclic skeletal tissue stress and strain histories. Estimation of long-term loading histories in humans is usually achieved by assessment of physical activity level by questionnaires, logbooks, and pedometers, since the majority of lower limb cyclic loading occurs during walking and running. These methods provide some indication of the mechanical loading history, but fail to consider the true magnitude of the lower limb skeletal forces generated by various daily activities. These techniques cannot account for individual gait characteristics, gait speed, and unpredictable high loading events that may influence bone mass significantly. We have developed portable instrumentation to measure and record the vertical component of the ground reaction force (GRFz) during normal daily activity. This equipment allows long-term quantitative monitoring of musculoskeletal loads, which in conjunction with bone mineral density assessments, promises to elucidate the relationship between skeletal stresses and bone remodeling.
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: Gravity creates blood pressure gradients which redistribute body fluids towards the feet. Positive G(z) centrifugation and lower body negative pressure (LBNP) have been proposed to simulate these and other effects of gravity during long-term existence in microgravity. We hypothesized that the magnitude of upper-to-lower body fluid redistribution would increase according to the following order: short-arm centrifugation (SAC), long-arm centrifugation (LAC), head-up tilt (HUT), and LBNP. To test this hypothesis, we employed strain gauge plethysmography of the neck, thigh and calf during HUT and supine SAC and LAC up to lG(z) at the feet, and during supine LBNP to 100 mm Hg. Supine 100 mm Hg LBNP generates footward force and produces transmural blood pressures in the foot approximately equal to 1 G(z) (90 deg) HUT. Heart rate was measured via cardiotachometry. Control measurements were made while supine. SAC and LAC elicited similar increases in thigh volume at 1 G(z) (2.3 +/- 0.4 and 2.1 +/- 0.1%, respectively; mean +/- se, n greater than or equal to 7). At 100 mm Hg LBNP, thigh volume increased (3.4 +/- 0.3%) significantly more than during l G(z) centrifugation (p less than 0.05). Surprisingly, due to a paradoxical 0.6% reduction of thigh volume between 0.8 and 1.0 G(z) HUT, thigh volume was increased only 0.6 +/- 0.3% at 1 G(z) HUT. The calf demonstrated similar, although less definitive, responses to the various gravitational stimuli. Neck volume tended to decrease less during HUT than during the other stimuli. Heart rate increased similarly during HUT (18 +/- 2 beats/min) and LAC (12 +/- 2 beats/min), and exhibited still greater elevation during LBNP (29 +/- 4 beats/min), yet did not increase during SAC. These results suggest upright posture activates mechanisms that counteract footward fluid redistribution which are not activated during supine applications of simulated gravity. LAC more closely approximated effects of normal gravity (HUT) than LBNP. Therefore, when considering LBNP to simulate gravity, these findings support efforts to reduce the cardiovascular stress imposed by LBNP, while preserving the gravity-like force generated by LBNP.
    Keywords: Aerospace Medicine
    Type: American Society for Gravitational and Space Biology Meeting; Oct 19, 1994 - Oct 22, 1994; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: We have proposed a novel method of using air pressure to apply an external axial force to the body, coincident with the body's center of mass, that has the potential of enabling Earth-equivalent musculoskeletal forces in space. By reversing the direction of the pressure differential, walking and running at reduced musculoskeletal levels are possible on Earth. We hypothesize that hypo- and hyper-g walking and running can be adequately simulated by this method of loading since gait is primarily governed by gravity acting at the center of mass and only secondarily by its distributed action on limb segments. We report here results from simulated hyper-g walking and running.
    Keywords: Man/System Technology and Life Support
    Type: Biomedical Engineering Symposium; May 13, 1994; Davis, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...