ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1420-9136
    Keywords: Induced seismicity ; gas field ; seismic deformation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract With objective of investigating the peculiarities of seismic process development and seismotectonic deformation character in the focal area of the Gazli earthquakes of 1976 (7.0〈M〈7.3) and 1984 (M=7.2), a local seismic network was installed. For the field observation period (May to June, 1991) more than 400 events with magnitudes −0.2〈M〈4.5 were recorded by at least 6 stations. Isometric presentation of earthquake hypocenters distribution allows us to define the depth and dipping planes orientation of seismoactive faults of the region. The focal mechanisms of 35 earthquakes for the period 1979–1988,M〉2.8, connected to a gas extraction regime period, and 75 events 1〈M〈4.3 for the 1991 period (gas storage regime) are used to analyze the dynamics of seismotectonic deformation processes (SDP) in this region. It has been ascertained, that the earth's crust in the Gazli region is subject to complicated deformation processes, particularly below 4 km depth. The predominant kind of deformation is compression. Vertical velocities of deformation show uplift of most of the region during the period of field work. The maximum velocity of vertical deformations for the Gazli structure isV=0.41 mm/year. The comparison of the vertical velocities' displacements due to seismic flow with recent tectonic movements of the earth's crust has revealed their direct relation and high percentage of seismic flow contribution to the tectonic movement. The results obtained testify that the active seismic processes in the Gazli region are connected not as much as the residual stress release in the focal zone of the earthquakes 05. 1976 and 1984,M〉7.0 but rather with the influence of the gas reservoir exploitational regime on the rocks with different rheologic properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: 〈span〉〈div〉ABSTRACT〈/div〉Rapid identification of felt earthquakes is essential for determining public earthquake information. We present a new method to detect such earthquakes that hinges on the ubiquity of smartphones and the accurate geolocation that they offer. More precisely, the method is based on launches by its users of the LastQuake app, the European‐Mediterranean Seismological Centre (EMSC) app providing rapid global earthquake information. Similar to two other existing methods, one based on the analysis of earthquake information website traffic and the other based on the publication on Twitter of earthquake related messages, it exploits the online reaction of eyewitnesses following ground shaking. Its time performance is shown to depend on the number of app users in the epicentral region and whether the earthquake happens during day or night. Over the 16‐month study period, the observed time difference between the arrival of the 〈span〉P〈/span〉 waves and the app launch times is typically 10 s longer at night than during the day. These reaction times can significantly decrease during a sequence of earthquakes affecting the same region, leading in the best cases to earthquake detection times as fast as 20 s from earthquake origin time. Eyewitnesses’ locations determined from app launches also map the felt area. In turn, in some cases, the surface of the felt area could offer a first‐order magnitude estimate within a few tens of seconds of their occurrence for small‐magnitude earthquakes and in a few minutes for larger ones. The analysis of online reaction of eyewitnesses not only offers seismological information that complements that derived from seismological networks (e.g., rapid identification of felt earthquakes, mapping of the felt area) but also provide insights into eyewitnesses’ behaviors and expectations during and immediately after a tremor.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-07-02
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-10-29
    Description: This study investigates how people affected by the 2015 Ghorka earthquake sequence in Nepal have adopted and used the LastQuake smartphone application and associated Twitter robot, which offer rapid earthquake information focusing on felt and damaging earthquakes. It is shown that mobile devices played a key role in Nepal by providing access to earthquake information and that the LastQuake smartphone application was rapidly identified and adopted through viral spread after the mainshock. Thumbnail-based questionnaires, which have replaced online macroseismic questionnaires on the smartphone application and on the website for mobile devices, ease language barriers and have proven to be very efficient for collecting testimonies within a few tens of minutes of a felt-earthquake occurrence. Offering rapid information on felt and damaging earthquakes is an effective strategy to engage with eyewitnesses and optimize the collection of eyewitnesses’ observations. The two-way and real-time communication channels that smartphones offer raises eyewitnesses’ expectations in terms of real-time information but also offer an opportunity to improve situation awareness and provide rapid and direct guidance to individuals immediately after shaking to contribute to risk reduction.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019
    Description: 〈p〉In many cases, it takes several minutes after an earthquake to publish online a seismic location with confidence. Via monitoring for specific types of increased website, app, or Twitter usage, crowdsourced detection of seismic activity can be used to "seed" the search in the seismic data for an earthquake and reduce the risk of false detections, thereby accelerating the publication of locations for felt earthquakes. We demonstrate that this low-cost approach can work at the global scale to produce reliable and rapid results. The system was retroactively tested on a set of real crowdsourced detections of earthquakes made during 2016 and 2017, with 50% of successful locations found within 103 s, 76 s faster than GEOFON and 271 s faster than the European-Mediterranean Seismological Centre’s publication times, and 90% of successful locations found within 54 km of the final accepted epicenter.〈/p〉
    Electronic ISSN: 2375-2548
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018
    Description: 〈span〉〈div〉ABSTRACT〈/div〉Rapid identification of felt earthquakes is essential for determining public earthquake information. We present a new method to detect such earthquakes that hinges on the ubiquity of smartphones and the accurate geolocation that they offer. More precisely, the method is based on launches by its users of the LastQuake app, the European‐Mediterranean Seismological Centre (EMSC) app providing rapid global earthquake information. Similar to two other existing methods, one based on the analysis of earthquake information website traffic and the other based on the publication on Twitter of earthquake related messages, it exploits the online reaction of eyewitnesses following ground shaking. Its time performance is shown to depend on the number of app users in the epicentral region and whether the earthquake happens during day or night. Over the 16‐month study period, the observed time difference between the arrival of the 〈span〉P〈/span〉 waves and the app launch times is typically 10 s longer at night than during the day. These reaction times can significantly decrease during a sequence of earthquakes affecting the same region, leading in the best cases to earthquake detection times as fast as 20 s from earthquake origin time. Eyewitnesses’ locations determined from app launches also map the felt area. In turn, in some cases, the surface of the felt area could offer a first‐order magnitude estimate within a few tens of seconds of their occurrence for small‐magnitude earthquakes and in a few minutes for larger ones. The analysis of online reaction of eyewitnesses not only offers seismological information that complements that derived from seismological networks (e.g., rapid identification of felt earthquakes, mapping of the felt area) but also provide insights into eyewitnesses’ behaviors and expectations during and immediately after a tremor.〈/span〉
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-12-29
    Description: The collection of earthquake testimonies (i.e., qualitative descriptions of felt shaking) is essential for macroseismic studies (i.e., studies gathering information on how strongly an earthquake was felt in different places), and when done rapidly and systematically, improves situational awareness and in turn can contribute to efficient emergency response. In this study, we present advances made in the collection of testimonies following earthquakes around the world using a thumbnail-based questionnaire implemented on the European-Mediterranean Seismological Centre (EMSC) smartphone app and its website compatible for mobile devices. In both instances, the questionnaire consists of a selection of thumbnails, each representing an intensity level of the European Macroseismic Scale 1998. We find that testimonies are collected faster, and in larger numbers, by way of thumbnail-based questionnaires than by more traditional online questionnaires. Responses were received from all seismically active regions of our planet, suggesting that thumbnails overcome language barriers. We also observed that the app is not sufficient on its own, because the websites are the main source of testimonies when an earthquake strikes a region for the first time in a while; it is only for subsequent shocks that the app is widely used. Notably though, the speed of the collection of testimonies increases significantly when the app is used. We find that automated EMSC intensities as assigned by user-specified thumbnails are, on average, well correlated with "Did You Feel It?" (DYFI) responses and with the three independently and manually derived macroseismic datasets, but there is a tendency for EMSC to be biased low with respect to DYFI at moderate and large intensities. We address this by proposing a simple adjustment that will be verified in future earthquakes.
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-01-03
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-01-01
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2006-07-01
    Print ISSN: 0895-0695
    Electronic ISSN: 1938-2057
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...