ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-03-21
    Description: The high metal content and fast expansion of supernova (SN) Ia ejecta lead to considerable line overlap in their optical spectra. Uncertainties in composition and ionization further complicate the process of line identification. In this paper, we focus on the 5900 Å emission feature seen in SN Ia spectra after bolometric maximum, a line which in the last two decades has been associated with [Co iii ] 5888 Å or Na i D. Using non-LTE time-dependent radiative-transfer calculations based on Chandrasekhar-mass delayed-detonation models, we find that Na i D line emission is extremely weak at all post-maximum epochs. Instead, we predict the presence of [Co iii ] 5888 Å after maximum in all our SN Ia models, which cover a range from 0.12 to 0.87 M of 56 Ni. We also find that the [Co iii ] 5888 Å forbidden line is present within days of bolometric maximum, and strengthens steadily for weeks thereafter. Both predictions are confirmed by observations. Rather than trivial taxonomy, these findings confirm that it is necessary to include forbidden-line transitions in radiative-transfer simulations of SNe Ia, both to obtain the correct ejecta cooling rate and to match observed optical spectra.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-06-02
    Description: We explore the physics of Type Ia supernova (SN Ia) light curves and spectra using the 1D non-local thermodynamic equilibrium (non-LTE) time-dependent radiative-transfer code cmfgen . Rather than adjusting ejecta properties to match observations, we select as input one ‘standard’ 1D Chandrasekhar-mass delayed-detonation hydrodynamical model, and then explore the sensitivity of radiation and gas properties of the ejecta on radiative-transfer modelling assumptions. The correct computation of SN Ia radiation is not exclusively a solution to an ‘opacity problem’, characterized by the treatment of a large number of lines. We demonstrate that the key is to identify and treat important atomic processes consistently. This is not limited to treating line blanketing in non-LTE. We show that including forbidden-line transitions of metals, and in particular Co, is increasingly important for the temperature and ionization of the gas beyond maximum light. Non-thermal ionization and excitation are also critical since they affect the colour evolution and the M 15 decline rate of our model. While impacting little the bolometric luminosity, a more complete treatment of decay routes leads to enhanced line blanketing, e.g. associated with 48 Ti in the U and B bands. Overall, we find that SN Ia radiation properties are influenced in a complicated way by the atomic data we employ, so that obtaining converged results is a real challenge. Nonetheless, with our fully fledged cmfgen model, we obtain good agreement with the golden standard Type Ia SN 2005cf in the optical and near-IR, from 5 to 60 d after explosion, suggesting that assuming spherical symmetry is not detrimental to SN Ia radiative-transfer modelling at these times. Multi-D effects no doubt matter, but they are perhaps less important than accurately treating the non-LTE processes that are crucial to obtain reliable temperature and ionization structures.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-04-29
    Description: Observations of SN 2011fe at early times reveal an evolution analogous to a fireball model of constant colour. In contrast, our unmixed delayed detonations of Chandrasekhar-mass white dwarfs (DDC series) exhibit a faster brightening concomitant with a shift in colour to the blue. In this paper, we study the origin of these discrepancies. We find that strong chemical mixing largely resolves the photometric mismatch at early times, but it leads to an enhanced line broadening that contrasts, for example, with the markedly narrow Si ii  6355 Å line of SN 2011fe. We also explore an alternative configuration with pulsational-delayed detonations (PDDEL model series). Because of the pulsation, PDDEL models retain more unburnt carbon, have little mass at high velocity, and have a much hotter outer ejecta after the explosion. The pulsation does not influence the inner ejecta, so PDDEL and DDC models exhibit similar radiative properties beyond maximum. However, at early times, PDDEL models show bluer optical colours and a higher luminosity, even for weak mixing. Their early-time radiation is derived primarily from the initial shock-deposited energy in the outer ejecta rather than radioactive-decay heating. Furthermore, PDDEL models show short-lived C ii lines, reminiscent of SN 2013dy. They typically exhibit lines that are weaker, narrower, and of near-constant width, reminiscent of SN 2011fe. In addition to multidimensional effects, varying configurations for such ‘pulsations’ offer a source of spectral diversity amongst Type Ia supernovae (SNe Ia). PDDEL and DDC models also provide one explanation for low- and high-velocity-gradient SNe Ia.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-01-03
    Description: We present non-local thermodynamic equilibrium time-dependent radiative transfer simulations of pair-instability supernovae (PISNe) stemming from red-supergiant (RSG), blue-supergiant and Wolf–Rayet star rotation-free progenitors born in the mass range 160–230 M , at 10 –4  Z . Although subject to uncertainties in convection and stellar mass-loss rates, our initial conditions come from physically-consistent models that treat evolution from the main sequence, the onset of the pair-production instability, and the explosion phase. With our set of input models characterized by large 56 Ni and ejecta masses, and large kinetic energies, we recover qualitatively the Type II-Plateau, II-peculiar and Ib/c light-curve morphologies, although they have larger peak bolometric luminosities (~10 9 to 10 10  L ) and a longer duration (~200 d). We discuss the spectral properties for each model during the photospheric and nebular phases, including Balmer lines in II-P and II-pec at early times, the dominance of lines from intermediate-mass elements near the bolometric maximum, and the strengthening of metal line blanketing thereafter. Having similar He-core properties, all models exhibit similar post-peak spectra that are strongly blanketed by Fe ii and Fe i lines, characterized by red colours, and that arise from photospheres/ejecta with a temperature of 4000 K. Combined with the modest linewidths after the bolometric peak, these properties contrast with those of known superluminous SNe, suggesting that PISNe are yet to be discovered. Being reddish, PISNe will be difficult to observe at high redshift except when they stem from RSG explosions, in which case they could be used as metallicity probes and distance indicators.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-03-22
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2010-12-24
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-03-10
    Description: We present 1D non-local thermodynamic equilibrium time-dependent radiative transfer simulations of a Chandrasekhar-mass delayed-detonation model which synthesizes 0.51 M of 56 Ni, and confront our results to the Type Ia supernova (SN Ia) 2002bo over the first 100 d of its evolution. Assuming only homologous expansion, this same model reproduces the bolometric and multiband light curves, the secondary near-infrared (NIR) maxima, and the optical and NIR spectra. The chemical stratification of our model qualitatively agrees with previous inferences by Stehle et al., but reveals significant quantitative differences for both iron-group and intermediate-mass elements. We show that ±0.1 M (i.e. ±20 per cent) variations in 56 Ni mass have a modest impact on the bolometric and colour evolution of our model. One notable exception is the U band, where a larger abundance of iron-group elements results in less opaque ejecta through ionization effects, our model with more 56 Ni displaying a higher near-ultraviolet flux level. In the NIR range, such variations in 56 Ni mass affect the timing of the secondary maxima but not their magnitude, in agreement with observational results. Moreover, the variation in the I , J , and K s magnitudes is less than 0.1 mag within ~10 d from bolometric maximum, confirming the potential of NIR photometry of SNe Ia for cosmology. Overall, the delayed-detonation mechanism in single Chandrasekhar-mass white dwarf progenitors seems well suited for SN 2002bo and similar SNe Ia displaying a broad Si ii 6355 Å line. Whatever multidimensional processes are at play during the explosion leading to these events, they must conspire to produce an ejecta comparable to our spherically symmetric model.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-09-23
    Description: Aims. We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Our goal with this complete dataset is to understand the nature of this peculiar object. Methods. Properties of the SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. We performed detailed analyses of SN photometric data by studying its peculiar light and color curves. SN 2016hnk spectra were compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, we used abundance stratification modeling to identify the various spectral features in the early phase spectral sequence and also compared the dataset to a modified non-LTE model previously produced for the sublumnious SN 1999by. Results. SN 2016hnk is consistent with being a subluminous (MB = −16.7 mag, sBV=0.43 ± 0.03), highly reddened object. The IFS of its host galaxy reveals both a significant amount of dust at the SN location, residual star formation, and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favors an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca II] λλ7291,7324 doublet with a Doppler shift of 700 km s−1. Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass (MCh) carbon-oxygen white dwarf that produced 0.108 M⊙ of 56Ni. Our modeling suggests that the narrow [Ca II] features observed in the nebular spectrum are associated with 48Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the MCh limit.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2005-02-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-06-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...