ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 35 (2000), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Saccharomyces cerevisiae PAU genes constitute the largest multigene family in yeast, with 23 members located mainly in subtelomeric regions. The role and regulation of these genes were previously unknown. We detected PAU gene expression during alcoholic fermentation. An analysis of PAU gene regulation using PAU–lacZ fusions and Northern analyses revealed that they were regulated by anaerobiosis. PAU genes display, however, different abilities to be induced by anaerobiosis and this appears to be related to their chromosomal localization; two subtelomeric copies are more weakly inducible than an interstitial one. We show that PAU genes are negatively regulated by oxygen and repressed by haem. Examination of PAU gene expression in rox1Δ and tup1Δ strains indicates that PAU repression by oxygen is mediated by an unknown, haem-dependent pathway, which does not involve the Rox1p anaerobic repressor but requires Tup1p. Given the size of the gene family, PAU genes could be expected to be important during yeast life and some of them probably help the yeast to cope with anaerobiosis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract Mutants of Candida wickerhamii and Dekkera intermedia, derepressed for β-glucosidase biosynthesis, were isolated. These mutants were also shown to hyperproduce this enzyme. In anaerobic culture, the C. wickerhamii mutant still hyperproduced β-glucosidase and was derepressed. Glucose-cellobiose anaerobic fermentation by this strain was thus improved. On the other hand, the D. intermedia mutant did not show any difference from the wild-type strain in anaerobic culture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Chromosomal DNA patterns using the transverse alternating field electrophoresis technique and mitochondrial DNA restriction profiles have been achieved for 22 enological strains of Saccharomyces cerevisiae. Both methods have evidenced a marked polymorphism of these strains. Twenty different karyotypes and 17 mitochondrial DNA banding patterns have been observed. Only three strains originating from the same vineyard could not be differentiated by either of the two methods. The polymorphism observed at the chromosomal and mitochondrial levels makes the techniques investigated powerful tools for identification and control of industrial strains.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1432-0983
    Keywords: Key wordsSaccharomyces cerevisiae ; Enological yeast ; Transcription ; Alcoholic fermentation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The adaptation of yeasts to industrial environments is thought to be largely dependent on gene-expression specificity. To assess the transcriptional specificity of an enological strain, we performed a pilot experiment and examined the transcript level of 99 ORFs of the chromosome-III right arm with two strains, an enological-derived strain and a laboratory strain, grown under three different physiological conditions: respiration, standard alcoholic fermentation and enological alcoholic fermentation. The use of 99 single ORF-derived probes led to the detection of 49 transcripts, most of which were present at low levels and were not regulated. Ethanol respiration induced transcripts, in a similar manner with both strains. While standard alcoholic fermentation led to only minor regulations, the enological fermentation conditions triggered the expression of different genes. In addition, a specific transcriptional response to these conditions was observed with the enological-derived strain. The known or predicted functions of several genes induced under enological conditions is related to either alcoholic fermentation or stress, suggesting that their specific induction could reflect adaptation of the strain to the enological environment. Our data suggest that systematic transcriptional studies are an effective way to assess the molecular basis of yeast adaptation to industrial environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Yeast 11 (1995), S. 809-822 
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; flocculation ; FLO1 ; surface protein ; repeated sequences ; expression ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The sequencing of a 6619 bp region encoding for a flocculation gene previously cloned from a strain defined as FLO5 (Bidard et al., 1994) has revealed that it was a FLO1 gene. The FLO1 gene product has been localized at the cell surface of the yeast cell by immunofluorescent microscopy. The Flo1 protein contains four regions with repeated sequences which account for about 70% of the amino acids of this protein. A functional analysis of the major repeated region has revealed that it plays an important role in determining the flocculation level. A gene disruption experiment has shown that the FLO5 strain STX 347-1D contains at least two flocculation genes of the FLO1 type but that they are supposed to be inactive and do not contribute to its flocculation. However, enzyme-linked immunosorbent assays performed on intact cells have revealed that a protein expressed at the cell surface of the FLO5 strain STX 347-1D is antigenically related to Flo1p. A deletion analysis of the 5′ region of the FLO1 gene has shown that the expression is submitted to controls which depend on the genetic background of the strain.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0749-503X
    Keywords: Saccharomyces cerevisiae ; Schizosaccharomyces pombe ; Lactococcus lactis ; malolactic enzyme ; malolactic fermentation ; heterologous expression ; NMR ; Life Sciences ; Life Sciences (general)
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The ability of yeast strains to perform both alcoholic and malolactic fermentation in winemaking was studied with a view to achieving a better control of malolactic fermentation in enology. The malolactic gene of Lactococcus lactis (mleS) was expressed in Saccharomyces cerevisiae and Schizosaccharomyces pombe. The heterologous protein is expressed at a high level in cell extracts of a S. cerevisiae strain expressing the gene mleS under the control of the alcohol dehydrogenase (ADH1) promoter on a multicopy plasmid. Malolactic enzyme specific activity is three times higher than in L. lactis extracts. Saccharomyces cerevisiae expressing the malolactic enzyme produces significant amounts of l-lactate during fermentation on glucose-rich medium in the presence of malic acid. Isotopic filiation was used to demonstrate that 75% of the l-lactate produced originates from endogenous l-malate and 25% from exogenous l-malate. Moreover, although a small amount of exogenous l-malate was degraded by S. cerevisiae transformed or not by mleS, all the exogenous degraded l-malate was converted into l-lactate via a malolactic reaction in the recombinant strain, providing evidence for very efficient competition of malolactic enzyme with the endogenous malic acid pathways. These results indicate that the sole limiting step for S. cerevisiae in achieving malolactic fermentation is in malate transport. This was confirmed using a different model, S. pombe, which efficiently degrades l-malate. Total malolactic fermentation was obtained in this strain, with most of the l-malate converted into l-lactate and CO2. Moreover, l-malate was used preferentially by the malolactic enzyme in this strain also.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0749-503X
    Keywords: flocculation ; immunolocalization ; mannoprotein ; cell wall ; Life and Medical Sciences ; Genetics
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology
    Notes: The yeast FLO genes encode cell surface proteins which are expected to play a major role in the control of flocculation. We have assessed the availability of the Flo proteins at the cell surface during the growth of two flocculent strains, ABXL-1D (FLO1) and STX347-1D (FLO5) using immunological approaches, enzyme-linked immunosorbent assays and immunofluorescence. Our data show that they are not permanently present at the cell surface but that their amount increases during growth. With both strains the flocculation level is tightly correlated to the amount of Flop antigen detected, suggesting that it is the availability of the Flo proteins at the cell surface which determines the flocculation level. Our data are consistent with the idea that the Flo proteins correspond to the flocculation lectins. The differences of flocculation pattern among strains could originate from variations in the regulation of the expression of the FLO genes. Monitoring of the distribution of the Flo proteins during cellular development revealed that they are incorporated essentially in the cell wall of growing buds. Incorporation of the Flo proteins in the cell wall displays a highly polarized aspect, at the bud tip and at the mother-daughter neck junction, which can persist in mature cells. Such a localization could be relevant to constraints of the cell wall incorporation of the mannoproteins. Depending on the regulation of Flop expression and on the incorporation of the proteins in the cell wall, a yeast population can be highly heterogeneous in Flo protein equipment. © 1998 John Wiley & Sons, Ltd.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2006-04-11
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-07-23
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1990-02-01
    Print ISSN: 0175-7598
    Electronic ISSN: 1432-0614
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...