ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-28
    Description: A forced draft fan, used for the supply of combustion air into the steam generator of the conventional liquefied natural gas (LNG) carrier was analyzed from the aspect of energy and exergy. The power delivered from the induction motor to the fan was calculated using the manufacturer’s data. The most significant impact on the fan energy power losses is from the air temperature difference between the fan outlet and inlet. The fan energy power losses are inversely proportional to the fan energy efficiency, and the values are between 19.9% and 63.4%, for the entire range of observed steam system loads. The fan exergy destruction depends primarily on the driving power and on the air mass flow rate. At higher loads, an important influence on the fan exergy destruction is from the air pressure at the fan outlet. The exergy efficiency change of the analyzed fan, for the range of observed steam system loads, is directly proportional to the rate of change in the air mass flow, whereas the obtained values of exergy efficiency are between 5.10% and 53.93%. The impact of ambient temperature on the fan exergy destruction and exergy efficiency exhibits is different than in most other steam system components. A change in ambient temperature of 10 °C causes a change in the exergy efficiency of the forced draft fan less than 0.5% in the entire range of observed steam loads.
    Electronic ISSN: 2077-1312
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-05-20
    Description: Croatia produced 21,366 tonnes of dry matter (DM) sewage sludge (SS) in 2016, a quantity expected to surpass 100,000 tonnes DM by 2024. Annual production rates for future wastewater treatment plants (WWTP) in Croatia are estimated at 5.8–7.3 Nm3/people equivalent (PE) for biogas and 20–25 kgDM/PE of sewage sludge. Biogas can be converted into 12–16 kWhel/PE of electricity and 19–24 kWhth/PE of heat, which is sufficient for 30–40% of electrical and 80–100% of thermal autonomy. The WWTP autonomy can be increased using energy recovery from sewage sludge incineration by 60% for electricity and 100% of thermal energy (10–13 kWhel/PE and 30–38 kWhth/PE). However, energy for sewage sludge drying exceeds energy recovery, unless solar drying is performed. The annual solar drying potential is estimated between 450–750 kgDM/m2 of solar drying surface. The lower heating value of dried sewage sludge is 2–3 kWh/kgDM and this energy can be used for assisting sludge drying or for energy generation and supply to WWTPs. Sewage sludge can be considered a renewable energy source and its incineration generates substantially lower greenhouse gases emissions than energy generation from fossil fuels. For the same amount of energy, sewage sludge emits 58% fewer emissions than natural gas and 80% less than hard coal and fuel oil. Moreover, this paper analysed the feasibility of sludge disposal practices by analysing three scenarios (landfilling, co-incineration, and mono-incineration). The analysis revealed that the most cost-effective sewage sludge disposal method is landfilling for 60% and co-incineration for 40% of the observed WWTPs in Croatia. The lowest CO2 emissions are obtained with landfilling and mono-incineration in 53% and 38% of the cases, respectively.
    Electronic ISSN: 1996-1073
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-01-01
    Print ISSN: 1359-4311
    Electronic ISSN: 1873-5606
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-08-26
    Description: The natural convection flow in the air gap between the absorber plate and glass cover of the flat plate solar collectors is predominantly evaluated based on the lumped capacitance method, which does not consider the spatial temperature gradients. With the recent advancements in the field of computational fluid dynamics, it became possible to study the natural convection heat transfer in the air gap of solar collectors with spatially resolved temperature gradients in the laminar regime. However, due to the relatively large temperature gradient in this air gap, the natural convection heat transfer lies in either the transitional regime or in the turbulent regime. This requires a very high grid density and a large convergence time for existing CFD methods. Higher order numerical methods are found to be effective for resolving turbulent flow phenomenon. Here we develop a non-dimensional transient numerical model for resolving the turbulent natural convection heat transfer in the air gap of a flat plate solar collector, which is fourth order accurate in both spatial and temporal domains. The developed model is validated against benchmark results available in the literature. An error of less than 5% is observed for the top heat loss coefficient parameter of the flat plate solar collector. Transient flow characteristics and various stages of natural convection flow development have been discussed. In addition, it was observed that the occurrence of flow mode transitions have a significant effect on the overall natural convection heat transfer.
    Electronic ISSN: 2227-9717
    Topics: Biology , Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-10-27
    Description: The progress of Indoor Environmental Quality (IEQ) research in school buildings has increased profusely in the last two decades and the interest in this area is still growing worldwide. IEQ in classrooms impacts the comfort, health, and productivity of students as well as teachers. This article systematically discusses IEQ parameters related to studies conducted in Indian school classrooms during the last fifteen years. Real-time research studies conducted on Indoor Air Quality (IAQ), Thermal Comfort (TC), Acoustic Comfort (AcC), and Visual Comfort (VC) in Indian school classrooms from July 2006 to March 2021 are considered to gain insight into the existing research methodologies. This review article indicates that IEQ parameter studies in Indian school buildings are tortuous, strewn, inadequate, and unorganized. There is no literature review available on studies conducted on IEQ parameters in Indian school classrooms. The results infer that in India, there is no well-established method to assess the indoor environmental condition of classrooms in school buildings to date. Indian school classrooms are bleak and in dire need of energy-efficient modifications that maintain good IEQ for better teaching and learning outcomes. The prevailing COVID-19 Pandemic, Artificial Intelligence (AI), National Education Policy (NEP), Sick Building Syndrome (SBS), Internet of Things (IoT), and Green Schools (GS) are also discussed to effectively link existing conditions with the future of IEQ research in Indian school classrooms.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-10-28
    Description: Building energy management system involves the development of control strategies for the heating, ventilation, and air-conditioning (HVAC), as well as lighting, systems. Building energy modeling is a significant part of designing such strategies. In order to analyze the feasibility of a building energy system model for any desired control strategy, a mathematical assessment tool is developed in this paper. A multi-input multi-output (MIMO) building energy system model, consisting of an outdoor wall, an external wall, two partition walls, one roof, and a ceiling, has been considered as the virtual test setup. A methodology for conducting stability and controllability assessment tests on the building energy model is proposed using inverse dynamics input theory (IDIT). IDIT enables the decoupling of control variables so as to enable the conversion of an MIMO system to a number of independent single-input single-output systems. The controllability is assessed based on the design properties for continuous systems: asymptotes and transmission zeros. The results show that the relative humidity and air temperature of the building space were controllable for all operating points; however, in unconditioned situations, where the humidity levels of the building space were greater than that of the outdoor levels, the models were unstable.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...