ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-04-21
    Description: Measurement of solar ultraviolet radiation (UVR) is important for the assessment of potential beneficial and adverse impacts on the biosphere, plants, animals, and humans. Excess solar UVR exposure in humans is associated with skin carcinogenesis and immunosuppression. Several factors influence solar UVR at the Earth’s surface, such as latitude and cloud cover. Given the potential risks from solar UVR there is a need to measure solar UVR at different locations using effective instrumentation. Various instruments are available to measure solar UVR, but some are expensive and others are not portable, both restrictive variables for exposure assessments. Here, we compared solar UVR sensors commercialized at low or moderate cost to assess their performance and quality of measurements against a high-grade Bentham spectrometer. The inter-comparison campaign took place between March 2018 and February 2019 at Saint-Denis, La Réunion. Instruments evaluated included a Kipp&Zonen UVS-E-T radiometer, a Solar Light UV-Biometer, a SGLux UV-Cosine radiometer, and a Davis radiometer. Cloud fraction was considered using a SkyCamVision all-sky camera and the Tropospheric Ultraviolet Visible radiative transfer model was used to model clear-sky conditions. Overall, there was good reliability between the instruments over time, except for the Davis radiometer, which showed dependence on solar zenith angle. The Solar Light UV-Biometer and the Kipp&Zonen radiometer gave satisfactory results, while the low-cost SGLux radiometer performed better in clear sky conditions. Future studies should investigate temporal drift and stability over time.
    Print ISSN: 1661-7827
    Electronic ISSN: 1660-4601
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-05-25
    Description: Volcanic plumes can be transported across vast distances and can have an impact on solar ultraviolet radiation (UVR) reaching the surface due to the scattering and absorption caused by aerosols. The dispersion of the volcanic plume from the Puyehue-Cordón Caulle volcanic complex (PCCVC) eruption was investigated to determine the effect on aerosol loading at Cape Point, South Africa. The eruption occurred on 4 June 2011 and resulted in a plume reaching a height of between 9 and 12 km and was dispersed across the Southern Hemisphere. Satellite sulphur dioxide (SO2) observations and a dispersion model showed low concentrations of SO2 at the secondary site. However, satellite observations of volcanic ash and ground-based aerosol measurements did show increases between 10 and 20 June 2011 at the secondary site. Furthermore, there was good agreement with the dispersion model results and observations from satellites with most of the plume located between latitudes 40°–60° South.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-04-30
    Description: Total column of ozone (TCO) time series analysis and accurate forecasting is of great significance in monitoring the status of the Chapman Mechanism in the stratosphere, which prevents harmful UV radiation from reaching the Earth’s surface. In this study, we performed a detailed time series analysis of the TCO data measured in Buenos Aires, Argentina. Moreover, hybrid data-driven forecasting models, based on long short-term memory networks (LSTM) recurrent neural networks (RNNs), are developed. We extracted the updated trend of the TCO time series by utilizing the singular spectrum analysis (SSA), empirical wavelet transform (EWT), empirical mode decomposition (EMD), and Mann-Kendall. In general, the TCO has been stable since the mid-1990s. The trend analysis shows that there is a recovery of ozone during the period from 2010 to 2017, apart from the decline of ozone observed during 2015, which is presumably associated with the Calbuco volcanic event. The EWT trend method seems to have effective power for trend identification, compared with others. In this study, we developed a robust data-driven hybrid time series-forecasting model (named EWT-LSTM) for the TCO time series forecasting. Our model has the advantage of utilizing the EWT technique in the decomposition stage of the LSTM process. We compared our model with (1) an LSTM model that uses EMD, namely EMD-LSTM; (2) an LSTM model that uses wavelet denoising (WD) (WD-LSTM); (3) a wavelet denoising EWT-LSTM (WD-EWT-LSTM); and (4) a wavelet denoising noise-reducing sequence called EMD-LSTM (WD-EMD-LSTM). The model that uses the EWT decomposition process (EWT-LSTM) outperformed the other five models developed here in terms of various forecasting performance evaluation criteria, such as the root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE), and correlation coefficient (R).
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-05-31
    Description: Trend-Run model was performed to estimate the trend in surface temperatures recorded at 12 sites in Guinea from 1960 to 2016 and to examine the contribution of each climate forcing. The coefficient of determination (R2) calculated varies between 0.60 and 0.90, it provides total information about the simulation capability of the model. The decadal trend values also calculated show an upward trend (between 0.04 °C ± 0.06 °C decade−1 and 0.21 °C ± 0.06 °C decade−1). In addition, forcings’ contributions were quantified, and the annual oscillation (AO) contribution is higher for most of the stations, followed by semiannual oscillation (SAO). Among the forcings, the tropical Northern Atlantic (TNA) contribution is greater than that of the sunspot number (SSN), Niño3.4 and Atlantic Niño (AN). Moreover, the Mann-Kendall test revealed a positive significant trend for all stations except at the Macenta site. Additionally, with sequential Mann-Kendall test, trend turning points were found only for the stations of Mamou, Koundara and Macenta at different dates. The temperature anomalies depict warming episodes (1970s, 1980s, 1984 and 1990s). Since then, the temperature is consistently increasing over the country. A significant warming has been shown, which might be further investigated using these models with additional contributing factors.
    Electronic ISSN: 2225-1154
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2017-11-02
    Description: In this investigation a statistical analysis of the characteristics of mesospheric inversion layers (MILs) over tropical regions is presented. This study involves the analysis of 16 years of lidar observations recorded at Réunion (20.8° S, 55.5° E) and 21 years of lidar observations recorded at Mauna Loa (19.5° N, 155.6° W) together with SABER observations at these two locations. MILs appear in 10 and 9.3 % of the observed temperature profiles recorded by Rayleigh lidar at Réunion and Mauna Loa, respectively. The parameters defining MILs show a semi-annual cycle over the two selected sites with maxima occurring near the equinoxes and minima occurring during the solstices. Over both sites, the maximum mean amplitude is observed in April and October, and this corresponds to a value greater than 35 K. According to lidar observations, the maximum and minimum mean of the base height ranged from 79 to 80.5 km and from 76 to 77.5 km, respectively. The MILs at Réunion appear on average ∼ 1 km thinner and ∼ 1 km lower, with an amplitude of ∼ 2 K higher than Mauna Loa. Generally, the statistical results for these two tropical locations as presented in this investigation are in fairly good agreement with previous studies. When compared to lidar measurements, on average SABER observations show MILs with greater amplitude, thickness and base altitudes of 4 K, 0.75 and 1.1 km, respectively. Taking into account the temperature error by SABER in the mesosphere, it can therefore be concluded that the measurements obtained from lidar and SABER observations are in significant agreement. The frequency spectrum analysis based on the lidar profiles and the 60-day averaged profile from SABER confirms the presence of the semi-annual oscillation where the magnitude maximum is found to coincide with the height range of the temperature inversion zone. This connection between increases in the semi-annual component close to the inversion zone is in agreement with most previously reported studies over tropics based on satellite observations. Results presented in this study confirm through the use of the ground-based Rayleigh lidar at Réunion and Mauna Loa that the semi-annual oscillation contributes to the formation of MILs over the tropical region.
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-01-09
    Description: Surface ultraviolet radiation (SUR) is not an increasing concern after the implementation of the Montreal Protocol and the recovery of the ozone layer (Morgenstern et al., 2008). However, large uncertainties remain in the prediction of future changes of SUR (Bais et al., 2015). Several studies pointed out that UV-B impacts the biosphere (Erickson et al., 2015), especially the aquatic system, which plays a central part in the biogeochemical cycle (Hader et al., 2007). It can affect phytoplankton productivity (Smith and Cullen, 1995). This influence can result in either positive or negative feedback on climate (Zepp et al., 2007). Global circulation model simulations predict an acceleration of the Brewer-Dobson circulation over the next century (Butchart, 2014), which would lead to a decrease in ozone levels in the tropics and an enhancement at higher latitudes (Hegglin and Shepherd, 2009). Reunion Island is located in the tropics (21° S, 55° E), in a part of the world where the amount of ozone in the ozone column is naturally low. In addition, this island is mountainous and the marine atmosphere is often clean with low aerosol concentrations. Thus, measurements show much higher SUR than at other sites at the same latitude or at midlatitudes. Ground-based measurements of SUR have been taken on Reunion Island by a Bentham DTMc300 spectroradiometer since 2009. This instrument is affiliated with the Network for the Detection of Atmospheric Composition Change (NDACC). In order to quantify the future evolution of SUR in the tropics, it is necessary to validate a model against present observations. This study is designed to be a preliminary parametric and sensitivity study of SUR modelling in the tropics. We developed a local parameterisation using the Tropospheric Ultraviolet and Visible Model (TUV; Madronich, 1993) and compared the output of TUV to multiple years of Bentham spectral measurements. This comparison started in early 2009 and continued until 2016. Only clear-sky SUR was modelled, so we needed to sort out the clear-sky measurements. We used two methods to detect cloudy conditions: the first was based on an observer's hourly report on the sky cover, while the second was based on applying Long and Ackerman (2000)'s algorithm to broadband pyranometer data to obtain the cloud fraction and then discriminating clear-sky windows on SUR measurements. Long et al. (2006)'s algorithm, with the co-located pyranometer data, gave better results for clear-sky filtering than the observer's report. Multiple model inputs were tested to evaluate the model sensitivity to different parameters such as total ozone column, aerosol optical properties, extraterrestrial spectrum or ozone cross section. For total column ozone, we used ground-based measurements from the SAOZ (Système d'Analyse par Observation Zénithale) spectrometer and satellite measurements from the OMI and SBUV instruments, while ozone profiles were derived from radio-soundings and the MLS ozone product. Aerosol optical properties came from a local aerosol climatology established using a Cimel photometer. Since the mean difference between various inputs of total ozone column was small, the corresponding response on UVI modelling was also quite small, at about 1 %. The radiative amplification factor of total ozone column on UVI was also compared for observations and the model. Finally, we were able to estimate UVI on Reunion Island with, at best, a mean relative difference of about 0.5 %, compared to clear-sky observations.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-03-16
    Description: The Antarctic ozone hole is a cyclical phenomenon that occurs during the austral spring where there is a large decrease in ozone content in the Antarctic region. Ozone-poor air mass can be released and leave through the Antarctic ozone hole, thus reaching midlatitude regions. This phenomenon is known as the secondary effect of the Antarctic ozone hole. The objective of this study is to show how tropospheric and stratospheric dynamics behaved during the occurrence of this event. The ozone-poor air mass began to operate in the region on 20 October 2016. A reduction of ozone content of approximately 23 % was observed in relation to the climatology average recorded between 1992 and 2016. The same air mass persisted over the region and a drop of 19.8 % ozone content was observed on 21 October. Evidence of the 2016 event occurred through daily mean measurements of the total ozone column made with a surface instrument (Brewer MkIII no. 167 Spectrophotometer) located at the Southern Space Observatory (29.42∘ S, 53.87∘ W) in São Martinho da Serra, Rio Grande do Sul. Tropospheric dynamic analysis showed a post-frontal high pressure system on 20 and 21 October 2016, with pressure levels at sea level and thickness between 1000 and 500 hPa. Horizontal wind cuts at 250 hPa and omega values at 500 hPa revealed the presence of subtropical jet streams. When these streams were allied with positive omega values at 500 hPa and a high pressure system in southern Brazil and Uruguay, the advance of the ozone-poor air mass that caused intense reductions in total ozone content could be explained. Keywords. Atmospheric composition and structure (middle atmosphere – composition and chemistry)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-03-16
    Description: Ozone is one of the chemical compounds that form part of the atmosphere. It plays a key role in the stratosphere where the “ozone layer” is located and absorbs large amounts of ultraviolet radiation. However, during austral spring (August–November), there is a massive destruction of the ozone layer, which is known as the “Antarctic ozone hole”. This phenomenon decreases ozone concentration in that region, which may affect other regions in addition to the polar one. This anomaly may also reach mid-latitudes; hence, it is called the “secondary effect of the Antarctic ozone hole”. Therefore, this study aims to identify the passage of an ozone secondary effect (OSE) event in the region of the city of Santa Maria – RS (29.68∘ S, 53.80∘ W) by means of a multi-instrumental analysis using the satellites TIMED/SABER, AURA/MLS, and OMI-ERS. Measurements were made in São Martinho da Serra/RS – Brazil (29.53∘ S, 53.85∘ W) using a sounding balloon and a Brewer Spectrophotometer. In addition, the present study aims to describe and analyse the influence that this stratospheric ozone reduction has on temperatures presented by these instruments, including data collected through the radio occultation technique. The event was first identified by the AURA/MLS satellite on 19 October 2016 over Uruguay. This reduction in ozone concentration was found by comparing the climatology for the years 1996–1998 for the state of Rio Grande do Sul, which is close to Uruguay. This event was already observed in Santa Maria/RS-Brazil on 20 October 2016 as presented by the OMI-ERS satellite and the Brewer Spectrophotometer. Moreover, a significant decrease was reported by the TIMED/SABER satellite in Uruguay. On 21 October, the poor ozone air mass was still over the region of interest, according to the OMI-ERS satellite, data from the sounding balloon launched in Santa Maria/RS-Brazil, and measurements made by the AURA/MLS satellite. Furthermore, the influence of ozone on the stratosphere temperature was observed during this period. Despite a continuous decrease detected in height, the temperature should have followed an increasing pattern in the stratospheric layer. Finally, the TIMED/SABER and OMI-ERS satellites showed that on 23 October, the air mass with low ozone concentration was moving away, and its layer, as well as the temperature, in the stratosphere was re-established. Keywords. Atmospheric composition and structure (middle atmosphere – composition and chemistry; instruments and techniques)
    Print ISSN: 0992-7689
    Electronic ISSN: 1432-0576
    Topics: Geosciences , Physics
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-12-19
    Description: After 43 years of inactivity, the Calbuco volcano, which is located in the southern part of Chile, erupted on 22 April 2015. The space–time evolutions (distribution and transport) of its aerosol plume are investigated by combining satellite (CALIOP, IASI, OMPS), in situ aerosol counting (LOAC OPC) and lidar observations, and the MIMOSA advection model. The Calbuco aerosol plume reached the Indian Ocean 1 week after the eruption. Over the Reunion Island site (21° S, 55.5° E), the aerosol signal was unambiguously enhanced in comparison with background conditions, with a volcanic aerosol layer extending from 18 to 21 km during the May–July period. All the data reveal an increase by a factor of  ∼  2 in the SAOD (stratospheric aerosol optical depth) with respect to values observed before the eruption. The aerosol mass e-folding time is approximately 90 days, which is rather close to the value ( ∼  80 days) reported for the Sarychev eruption. Microphysical measurements obtained before, during, and after the eruption reflecting the impact of the Calbuco eruption on the lower stratospheric aerosol content have been analyzed over the Reunion Island site. During the passage of the plume, the volcanic aerosol was characterized by an effective radius of 0.16 ± 0.02 µm with a unimodal size distribution for particles above 0.2 µm in diameter. Particle concentrations for sizes larger than 1 µm are too low to be properly detected by the LOAC OPC. The aerosol number concentration was  ∼  20 times higher that observed before and 1 year after the eruption. According to OMPS and lidar observations, a tendency toward conditions before the eruption was observed by April 2016. The volcanic aerosol plume is advected eastward in the Southern Hemisphere and its latitudinal extent is clearly bounded by the subtropical barrier and the polar vortex. The transient behavior of the aerosol layers observed above Reunion Island between May and July 2015 reflects an inhomogeneous spatio-temporal distribution of the plume, which is controlled by the localization of these dynamical barriers.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...