ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 106 (1997), S. 5297-5297 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: The qualitative change in response (at a kinetic temperature of about 7.0 K) of the 13 atom Lennard-Jones cluster to monopole excitation is discussed. It is argued that the phenomenon is neither due to a classical-potential-barrier-crossing process nor due to the breakdown of the harmonic regime. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    College Park, Md. : American Institute of Physics (AIP)
    The Journal of Chemical Physics 105 (1996), S. 3679-3685 
    ISSN: 1089-7690
    Source: AIP Digital Archive
    Topics: Physics , Chemistry and Pharmacology
    Notes: We have performed classical molecular dynamics simulation of Ar13 cluster to study the behavior of collective excitations. In the solid "phase'' of the cluster, the collective oscillation of the monopole mode can be well fitted to a damped harmonic oscillator. The parameters of the equivalent damped harmonic oscillator—the damping coefficient, spring constant, time period of oscillation and the mass of the oscillator—all show a sharp change in behavior at a kinetic temperature of about 7.0 °K. This marks yet another characteristic temperature of the system, a temperature Ts below which collective excitations are very stable, and at higher temperatures the single particle excitations cause the damping of the collective oscillations. We argue that so long as the cluster remains confined within the global potential energy minimum the collective excitations do not decay; and once the cluster comes out of this well, the local potential energy minima pockets act as single particle excitation channels in destroying the collective motion. The effect is manifest in almost all the physical observables of the cluster. © 1996 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Letters in mathematical physics 4 (1980), S. 153-156 
    ISSN: 1573-0530
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics , Physics
    Notes: Abstract We obtain exact solutions for the motion of a classical anharmonic oscillator in the potential Bx 2−|A|x 4+Cx 6, and discuss the energy dependence of the frequencies of oscillation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    The European physical journal 95 (1994), S. 275-280 
    ISSN: 1434-6036
    Keywords: 74.70.Kn ; 74.25.Kc ; 78.30.Jw
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract An interpretation of the Raman data of the organic superconductor (BEDT-TTF)2 I 3 is given, based on the modified charge bag model for superconductivity. The Raman intensities are calculated at zero temperature both in the normal as well as the superconducting (SC) states. The scattering due to charge carriers as well as the phonons are taken into account. The results show a constant intensity background which reduces on going from the normal to the superconducting state. Similarly, the loss of intensity, broadening and softening of the frequency of a low lying phonon on going from the normal to the SC state are predicted. All these features are in qualitative agreement with the observed Raman data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Meteorology and atmospheric physics 65 (1998), S. 77-91 
    ISSN: 1436-5065
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Summary A simple 1.5 layer reduced gravity transport model is used to understand the influence of a moving tropical cyclone on the upper layer of the Bay of Bengal. The wind stress used to force the model is derived from an idealised cyclone. The model cyclone is considered to be a symmetric vortex with both tangential and radial winds. The cyclone center moves northwestwards between the points 97E, 8N and 82E, 23N. In the control experiment, the cyclone is allowed to move the total distance in 5 days. The oceanic response is asymmetric in contrast to the symmetric wind forcings. Right bias found in the maxima of model circulation and upper layer thickness deviations, is in agreement with other modelling studies. Fifteen sensitivity experiments are carried out by varying the intensity, size and speed of the cyclone, by changing the model parameters and with different initial conditions. Model fields show linear response to changes in the intensity and size of the cyclone. The changes in the maximum wind of the cyclone produces highest variability in the model fields. Increase in model resolution in association with the corresponding decrease in viscosity results in the enhancement of maxima of the flow magnitude and ULTD. Increasing the phase speed of the initial mode results in a wider spreading of energy and hence decrease in the flow intensity and the upper layer deviations. Model results do not show much variation by considering different initial conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-04-04
    Description: The effect of horizontal resolution on tropical variability is investigated within the modified SINTEX model, SINTEX-F, developed jointly at INGV, IPSL and at the Frontier Research System. The horizontal resolutions T30 and T106 are investigated in terms of the coupling characteristics, frequency and variability of the tropical ocean-atmosphere interactions. It appears that the T106 resolution is generally beneficial even if it does not eliminate all the major systematic errors of the coupled model. There is an excessive shift west of the cold tongue and ENSO variability, and high resolution has also a somewhat negative impact to the variability in the East Indian Ocean. A dominant two-year peak for the NINO3 variabilty in the T30 model is moderated in the T106 as it shifts to longer time scale. At high resolution new processes come into play, as the coupling of tropical instability waves, the resolution of coastal flows at the Pacific Mexican coasts and improved coastal forcing along the coast of South America. The delayed oscillator seems the main mechanism that generates the interannual variability in both models, but the models realize it in different ways. In the T30 model it is confined close to the equator, involving relatively fast equatorial and near-equatorial modes, in the high resolution, it involves a wider latitudinal region and slower waves. It is speculated that the extent of the region that is involved in the interannual variability may be linked to the time scale of the variability itself.
    Description: This research was partially supported by the Italy–USA Cooperation Program of the Italian Ministry of Environment and by the EU projects ENSEMBLES and DYNAMITE.
    Description: Published
    Description: 730-750
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: coupled models ; tropical variability ; ENSO system ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-04-04
    Description: The Indian Summer Monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between ISM and Tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean Dipole Mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the Coupled Manifold, is used to investigate the TIO SST variability and its relation with the Tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the Tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the Tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.
    Description: Submitted
    Description: JCR Journal
    Description: open
    Keywords: Indian Ocean ; monsoon ; 03. Hydrosphere::03.01. General::03.01.03. Global climate models
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: manuscript
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2017-04-04
    Description: The Indian Summer Monsoon (ISM) is one of the main components of the Asian summer monsoon. It is well known that one of the starting mechanisms of a summer monsoon is the thermal contrast between land and ocean and that sea surface temperature (SST) and moisture are crucial factors for its evolution and intensity. The Indian Ocean, therefore, may play a very important role in the generation and evolution of the ISM itself. A coupled general circulation model, implemented with a high resolution atmospheric component, appears to be able to simulate the Indian summer monsoon in a realistic way. In particular, the features of the simulated ISM variability are similar to the observations. In this study, the relationships between ISM and Tropical Indian Ocean (TIO) SST anomalies are investigated, as well as the ability of the coupled model to capture those connections. The recent discovery of the Indian Ocean Dipole Mode (IODM) may suggest new perspectives in the relationship between ISM and TIO SST. A new statistical technique, the Coupled Manifold, is used to investigate the TIO SST variability and its relation with the Tropical Pacific Ocean (TPO). The analysis shows that the SST variability in the TIO contains a significant portion that is independent from the TPO variability. The same technique is used to estimate the amount of Indian rainfall variability that can be explained by the Tropical Indian Ocean SST. Indian Ocean SST anomalies are separated in a part remotely forced from the Tropical Pacific Ocean variability and a part independent from that. The relationships between the two SSTA components and the Indian monsoon variability are then investigated in detail.
    Description: Published
    Description: 3083-3105
    Description: 3.7. Dinamica del clima e dell'oceano
    Description: JCR Journal
    Description: reserved
    Keywords: Indian Ocean ; monsoon ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2021-09-09
    Description: The Indo-Pacific Ocean (i.e. region between 30E and 150E) has been experiencing a spread warming since the 1950s. At the same time the large-scale summer monsoon rainfall over India and the moisture over the East Africa/Arabian Sea are both decreasing. In this study we intend to investigate how the decrease of moisture over the East Africa/Arabian Sea is related with the Indo-Pacific Ocean warming and how this could affect the variability of the Indian summer monsoon rainfall. We performed the analysis for the period 1951-2012 based on observed precipitation, sea surface temperature and atmospheric reanalysis products and we verified the robustness of the result by comparing different datasets. The decreasing trend of moisture over the East Africa/Arabian Sea coincides with an increasing trend of moisture over the western Pacific region. This is accompanied by the strengthening (weakening) of the upward motion over the western Pacific (East Africa/Arabian Sea) that, consequently, contributes in strengthening the western Pacific-Indian Ocean Walker circulation. Associated with it, the low-level westerlies are weakening over the peninsular India, thus contributing to the reduction of moisture transport towards India. Therefore, rainfall has decreased over the Western Ghats and central-east India. Differently from previous decades, since 2003 moisture over the East Africa/Arabian Sea started to increase and this is accompanied by the strengthening of convection due to increased warming of sea surface temperature over the western Arabian Sea. Despite this moisture increase over the Arabian sea, we found that moisture transport is still weakening over the Indian landmass in the very recent decade and still contributing to the decreased precipitation over the northeast India and southern part of the Western Ghats.
    Description: Published
    Description: 949–965
    Description: 4A. Clima e Oceani
    Description: JCR Journal
    Description: restricted
    Keywords: Indian Ocean warming ; Indo-Pacific moisture ; Indian monsoon rainfall ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.04. Processes and Dynamics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  XXVIII General Assembly of the International Union of Geodesy and Geophysics (IUGG)
    Publication Date: 2023-04-25
    Description: We have been developing a dynamical seasonal prediction system based on a climate model called the Scale Interaction Experiment-Frontier ver. 2 (SINTEX-F2) under the EU–Japan collaborative framework. It has demonstrated high skills in the prediction of climate phenomena in the tropical Pacific and Indian Oceans (e.g., El Niño/Southern Oscillation (ENSO), ENSO-Modoki, and Indian Ocean Dipole events) and their teleconnections. Encouraged by the performance, we further explored the predictability of drought in East Africa during the short rains season of 2021. Many parts of East Africa experienced extremely dry conditions during the short rains season of October–December of this year. Interestingly, this was predicted a few months earlier by the 108-member ensemble seasonal prediction system based on the SINTEX-F climate model. Based on the co-variability of inter-member anomalies, we found that the 108-member ensemble prediction system has an advantage in finding possible co-variability patterns influencing predictions of precipitation, in which the signal-to-noise ratio is low relative to predictions of temperature. This analysis demonstrates that the 2021 negative Indian Ocean Dipole was responsible for the unusually dry conditions over East Africa. We also developed a hybrid statistical-dynamical framework that was found to be more skillful than the original SINTEX-F model at predicting drought in East Africa for a longer lead time. We hope this added predictability will help people take the necessary mitigation measures to reduce the devastating impact of the drought.
    Language: English
    Type: info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...