ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2016-07-13
    Description: Underwater video recordings in the mouth of a squid trawl were used to evaluate the effectiveness of a trawl configured with drop-chain groundgear to catch longfin inshore squid ( Doryteuthis pealeii ) and reduce bycatch of finfish in the Nantucket Sound squid fishery off Cape Cod, Massachusetts, USA. Entrance through the trawl mouth or escape underneath the fishing line and between drop chains was quantified for targeted squid, and two major bycatch species, summer flounder ( Paralichthys dentatus ) and skates (family Rajidae). Additionally, contact and impingement between animals and groundgear were also quantified. Fish and squid swimming behaviours, positions, orientations, and time in the trawl mouth were quantified and related to capture or escape at the trawl mouth. Squid entered the trawl singly and in schools, and no squid were observed escaping under the fishing line. Most squid entered the trawl in the upper portion of the trawl mouth; mantle orientated away from the trawl and swimming in the same direction, and were gradually overtaken, not actively attempting to escape. Summer flounder and skates were observed to remain on or near the seabed, orientated, and swimming in the same direction as the approaching trawl. The majority (60.5%) of summer flounder entered the trawl above the fishing line. Summer flounder that changed their orientation and turned 180° were significantly more likely to enter the trawl ( p 〈 0.05). Most skates (89.7%) avoided trawl entrance and escaped under the fishing line. Neither squid nor summer flounder were observed to make contact or become impinged to the groundgear; however, 35.4% of skates had substantial contact with groundgear, with 12.3% becoming impinged. Video analysis results showed that the drop-chain trawl is effective at retaining targeted squid while allowing skates to escape. However, it is ineffective at avoiding the capture of summer flounder.
    Print ISSN: 1054-3139
    Electronic ISSN: 1095-9289
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...