ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-06-15
    Description: In this study, time-dependent probabilistic tsunami hazard analysis (PTHA) is performed for Tuzla, Istanbul, in the Sea of Marmara, Turkey, using various earthquake scenarios of Prince Island Fault (PIF) within the next 50 and 100 years. The Monte Carlo (MC) simulation technique is used to generate a synthetic earthquake catalogue, which includes earthquakes having moment magnitudes between Mw6.5 and 7.1. This interval defines the minimum and maximum magnitudes for the fault in the case of an entire fault rupture, which depends on the characteristic fault model. Based on this catalogue, probability of occurrence and associated tsunami wave heights are calculated for each event. The study associates the probabilistic approach with tsunami numerical modeling. The tsunami numerical code NAMI DANCE was used for tsunami simulations. According to the results of the analysis, distribution of probability of occurrence corresponding to tsunami hydrodynamic parameters is represented. Maximum positive and negative wave amplitudes show that tsunami wave heights up to 1 m have 65 % probability of exceedance for the next 50 years and this value increases by 85 % in the Tuzla region for the next 100 years. Inundation depth also exceeds 1 m in the region with probabilities of occurrence of 60 % and 80 % for the next 50 and 100 years, respectively. Moreover, probabilistic inundation maps are generated to investigate inundated zones and the amount of water penetrated inland. Probability of exceedance of 0.3 m wave height ranges between 10 % and 75 % according to these probabilistic inundation maps, and the maximum inundation distance calculated in the entire earthquake catalogue is 60 m in this test site. Furthermore, synthetic gauge points are selected along the western coast of Istanbul by including Tuzla coasts. Tuzla is one of the areas that shows high probability exceedance of 0.3 m wave height, which is around 90 %, for the next 50 years while this probability reaches up to more than 95 % for the next 100 years.
    Print ISSN: 1561-8633
    Electronic ISSN: 1684-9981
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-04-29
    Description: Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach.
    Electronic ISSN: 2296-6463
    Topics: Geosciences
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-03-05
    Description: In this study, time-dependent probabilistic tsunamihazard analysis (PTHA) is performed for Tuzla, Istanbul, inthe Sea of Marmara, Turkey, using various earthquake sce-narios of Prince Island Fault (PIF) within the next 50 and100 years. The Monte Carlo (MC) simulation technique isused to generate a synthetic earthquake catalogue, whichincludes earthquakes having moment magnitudes betweenMw6.5 and 7.1. This interval defines the minimum and max-imum magnitudes for the fault in the case of an entire faultrupture, which depends on the characteristic fault model.Based on this catalogue, probability of occurrence and as-sociated tsunami wave heights are calculated for each event.The study associates the probabilistic approach with tsunaminumerical modeling. The tsunami numerical code NAMIDANCE was used for tsunami simulations. According to theresults of the analysis, distribution of probability of occur-rence corresponding to tsunami hydrodynamic parameters isrepresented. Maximum positive and negative wave ampli-tudes show that tsunami wave heights up to 1 m have 65 %probability of exceedance for the next 50 years and this valueincreases by 85 % in the Tuzla region for the next 100 years.Inundation depth also exceeds 1 m in the region with proba-bilities of occurrence of 60 % and 80 % for the next 50 and100 years, respectively. Moreover, probabilistic inundationmaps are generated to investigate inundated zones and theamount of water penetrated inland. Probability of exceedanceof 0.3 m wave height ranges between 10 % and 75 % accord-ing to these probabilistic inundation maps, and the maximuminundation distance calculated in the entire earthquake cata-logue is 60 m in this test site. Furthermore, synthetic gaugepoints are selected along the western coast of Istanbul by in-cluding Tuzla coasts. Tuzla is one of the areas that showshigh probability exceedance of 0.3 m wave height, which isaround 90 %, for the next 50 years while this probabilityreaches up to more than 95 % for the next 100 years.
    Description: Published
    Description: 1741–1764
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-12-14
    Description: Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach.
    Description: Published
    Description: 628772
    Description: 6T. Studi di pericolosità sismica e da maremoto
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-12-15
    Description: We investigated the seismic fault structure and the rupture characteristics of the MW 6.6, 2 May 2020, Cretan Passage earthquake through tsunami data inverse modelling. Our results suggest a shallow crustal event with a reverse mechanism within the accretionary wedge rather than on the Hellenic Arc subduction interface. The study identifies two possible ruptures: a steeply sloping reverse splay fault and a back-thrust rupture dipping south, with a more prominent dip angle.
    Description: We present a source solution for the tsunami generated by the Mw 6.6 earthquake that occurred on 2 May 2020, about 80 km offshore south of Crete, in the Cretan Passage, on the shallow portion of the Hellenic Arc subduction zone (HASZ). The tide gauges recorded this local tsunami on the southern coast of Crete and Kasos island. We used Crete tsunami observations to constrain the geometry and orientation of the causative fault, the rupture mechanism, and the slip amount. We first modelled an ensemble of synthetic tsunami waveforms at the tide gauge locations, produced for a range of earthquake parameter values as constrained by some of the available moment tensor solutions. We allow for both a splay and a back-thrust fault, corresponding to the two nodal planes of the moment tensor solution. We then measured the misfit between the synthetic and the Ierapetra observed marigram for each source parameter set. Our results identify the shallow, steeply dipping back-thrust fault as the one producing the lowest misfit to the tsunami data. However, a rupture on a lower angle fault, possibly a splay fault, with a sinistral component due to the oblique convergence on this segment of the HASZ, cannot be completely ruled out. This earthquake reminds us that the uncertainty regarding potential earthquake mechanisms at a specific location remains quite significant. In this case, for example, it is not possible to anticipate if the next event will be one occurring on the subduction interface, on a splay fault, or on a back-thrust, which seems the most likely for the event under investigation. This circumstance bears important consequences because back-thrust and splay faults might enhance the tsunamigenic potential with respect to the subduction interface due to their steeper dip. Then, these results are relevant for tsunami forecasting in the framework of both the long-term hazard assessment and the early warning systems.
    Description: Published
    Description: 3713–3730
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: JCR Journal
    Keywords: Tsunami, Mediterranean, Early Warning ; 04.06. Seismology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-12-15
    Description: Tsunami warning centres face the challenging task of rapidly forecasting tsunami threat immediately after an earthquake, when there is high uncertainty due to data deficiency. Here we introduce Probabilistic Tsunami Forecasting (PTF) for tsunami early warning. PTF explicitly treats data- and forecast-uncertainties, enabling alert level definitions according to any predefined level of conservatism, which is connected to the average balance of missed-vs-false-alarms. Impact forecasts and resulting recommendations become progressively less uncertain as new data become available. Here we report an implementation for near-source early warning and test it systematically by hindcasting the great 2010 M8.8 Maule (Chile) and the well-studied 2003 M6.8 Zemmouri-Boumerdes (Algeria) tsunamis, as well as all the Mediterranean earthquakes that triggered alert messages at the Italian Tsunami Warning Centre since its inception in 2015, demonstrating forecasting accuracy over a wide range of magnitudes and earthquake types.
    Description: Published
    Description: 5677
    Description: 8T. Sismologia in tempo reale e Early Warning Sismico e da Tsunami
    Description: JCR Journal
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2023-12-27
    Description: The EU Center of Excellence for Exascale in Solid Earth (ChEESE) develops exascale transition capabilities in the domain of Solid Earth, an area of geophysics rich in computational challenges embracing different approaches to exascale (capability, capacity, and urgent computing). The first implementation phase of the project (ChEESE-1P; 2018–2022) addressed scientific and technical computational challenges in seismology, tsunami science, volcanology, and magnetohydrodynamics, in order to understand the phenomena, anticipate the impact of natural disasters, and contribute to risk management. The project initiated the optimisation of 10 community flagship codes for the upcoming exascale systems and implemented 12 Pilot Demonstrators that combine the flagship codes with dedicated workflows in order to address the underlying capability and capacity computational challenges. Pilot Demonstrators reaching more mature Technology Readiness Levels (TRLs) were further enabled in operational service environments on critical aspects of geohazards such as long-term and short-term probabilistic hazard assessment, urgent computing, and early warning and probabilistic forecasting. Partnership and service co-design with members of the project Industry and User Board (IUB) leveraged the uptake of results across multiple research institutions, academia, industry, and public governance bodies (e.g. civil protection agencies). This article summarises the implementation strategy and the results from ChEESE-1P, outlining also the underpinning concepts and the roadmap for the on-going second project implementation phase (ChEESE-2P; 2023–2026).
    Description: EU
    Description: Published
    Description: 47-61
    Description: OSV1: Verso la previsione dei fenomeni vulcanici pericolosi
    Description: JCR Journal
    Keywords: HPC ; Physical models ; 04.08. Volcanology
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...