ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Zoomorphology 109 (1990), S. 281-293 
    ISSN: 1432-234X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Representatives of all avian orders were studied in order to establish that the tendon-locking mechanism (TLM), consisting of local specialization of the flexor tendons and the adjacent portion of the flexor tendon sheath, is by no means rare, but rather, constitutes the prevalent condition in a large majority of the avian species sampled. The areas of tubercles on the tendons and the adjacent sheath plications intermesh with one another thereby forming a true tendon-locking mechanism that maintains the distal and other interphalangeal joints of the digits in the flexed position. The TLM seems to function not only in perching, but in a wide variety of other activities of the avian foot including swimming, wading, prey-grasping, clinging, hanging, and tree climbing. The basic structural components of the mechanism are remarkably similar in the divergent avian groups adapted for these activities. Ultrastructural detail of the TLM was studied by means of scanning and transmission electron microscopy. Interdigital variation in distribution of the TLM in all of the digits of individuals were made as were comparisons of the interspecific distribution of the TLM. An analysis of the biomechanics involved in engaging the elements of the TLM and how they produce locking of the flexed joints of the digits includes a consideration of the roles of the podothecal pads, ungual flexor processes, and the elastic flexor and extensor ligaments of the toes. The components of the TLM are differentiated in early fetal development establishing that the TLM components are not acquired adventitiously in response to such factors as posthatching mechanical stresses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 225 (1995), S. 91-105 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: The supporting elements of the avian propatagium were examined in intact birds and as isolated components, using static force-length measurements, calculated models, and airflow observations. The propatagial surface supported between Lig. propatagiale (LP) and brachium-antebrachium is equally resistant to distortion over the range of wing extension used in flight. The lengths LP assumes in flight occur across a nearly linear, low-stiffness portion of the force-length curve of its extensible pars elastica. In an artificial airflow, intact wings automatically extend; their degree of extension is roughly correlated with the airflow velocity. Comparisons between geometric models of the wing and the passive force-length properties of LPs suggest that the stress along LP blances the drag forces acting to extend the elbow. The mechanical properties (stiffness) of the LP vary and appear to be tuned for flight-type characteristics, e.g., changes in wing extension during flight and drag. Lig. limitants cubiti and LP combine to limit elbow extension at its maximum, a safety device in flight preventing hyperextension of the elbow and reduction of the propatagium's cambered flight surface. Calculations using muscle and ligament lengths suggest that M. deltoideus, pars propatagialis, via its insertions onto both the propatagial ligaments, controls and coordinates propatagial deployment, leading edge tenseness, and elbow/wing extension across the range of wing extensions used in flight. The propatagial ligaments and M. deltoideus, pars propatagialis, along with skeleto-ligamentous elbow/carpus apparatus, are integral components of the wing's extension control mechanism. © 1995 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 216 (1993), S. 197-208 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Rather than the usual mammalian scheme in which tendon and sheath surfaces provide as little friction as possible, the tendons and sheaths of many bats have a locking segment on the manual and pedal flexor tendon complex. This tendon locking mechanism (TLM) exists opposite the proximal phalanges of each toe and pollex of many bats. Its structure, similar to a ratchet mechanism, assists bats in hanging with little muscular effort. The third digit of the pelvic limb and the pollex of species representing 15 chiropteran families were studied to determine the presence or absence, morphology, and function of the TLM. Most of the species studied have a TLM consisting of a patch of tubercles on the ventral surface of the flexor tendon associated with the proximal phalanx of each pollex or toe. The sheath adjacent to this portion of the flexor tendon has a series of transverse folds or ridges, which, when engaged with the tubercles on the tendon, lock the tendon in place. The TLM is similar in megachiropterans and microchiropterans possessing it. The TLM is absent, however, in some of the microchiropterans studied, most notably in the phyllostomids. Since many birds have a TLM similar to that of bats, it is an excellent example of the convergent evolution of a feature brought about by similar functional pressures on birds and bats. © 1993 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Journal of Morphology 219 (1994), S. 205-224 
    ISSN: 0362-2525
    Keywords: Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Skinfolds and feathers form the profile of the avian airfoil. The wing of birds has a nearly flat profile from shoulder to carpus, without the presence of the propatagium. The propatagium is the largest skinfold of the wing; it fills the angle formed by the partially flexed elbow, and with its feathers forms a rounded leading edge and dorsally cambered profile added to the cranial aspect of the wing. The propatagium is variably deployed, relative to elbow extension, in flight; support for its cambered shape is maintained by multilayered collagenous and elastic tissue networks suspended between leading edge and dorsal antebrachium. The leading edge ligament (Lig. propatagiale) courses from deltopectoral crest to carpus and, with its highly distensible center section, supports the leading edge of the propatagium across a range of wing extensions. The elbow extension limiting ligament (Lig. limitans cubiti) courses from deltopectoral crest to proximal antebrachium and limits maximum elbow extension. M. deltoideus, pars propatagialis inserts on the proximal end of the common origin of the propatagial ligaments and, by way of the insertions of the two ligaments, coordinates (1) automatic flexion / extension actions of the elbow and wrist, (2) propatagial deployment, and (3) tension along the length of Lig. propatagiale supporting the leading edge. © 1994 Wiley-Liss, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...