ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Monograph available for loan
    Monograph available for loan
    Washington, DC [u.a.] : Island Press
    Call number: PIK N 531-12-0065
    Description / Table of Contents: Contents: 1. Transforming the Rockies: Human Forces, Settlement Patterns, and Ecosystem Effects ; PART I. The Background of Environmental Change ; 2. Geomorphic and Biogeographic Setting of the Rocky Mountains ; 3. Paleoenvironmental History of the Rocky Mountain Region during the Past 20,000 Years ; 4. Climates of the Rocky Mountains: Historical and Future Patterns ; PART II. Human-Driven Changes to Rocky Mountain Landscapes ; 5. Natural Resource Extraction: Past, Present, and Future ; 6. Ecological Effects of Resource Development in Running Waters ; 7. The Cascading Effects of Fire Exclusion in Rocky Mountain Ecosystems ; 8. Rocky Road in-the Rockies: Challenges to Biodiversity ; PART III. Synthesis of Human Influences on Different Ecological Zones ; 9. Islands in the Sky: Alpine and Treeline Ecosystems of the Rockies ; 10. The Heart of the Rockies: Montane and Subalpine Ecosystems ; 11. Base Camps of the Rockies: The Intermountain Grasslands ; PART IV. Case Studies ; 12. Rumblings in Rio Arriba: Landscape Changes in the Southern Rocky Mountains of Northern New Mexico ; 13. Collaborative Development of a Conservation Planning System: A Case Study of Summit County, Colorado ; 14. Natural and Cultural Influences on Ecosystem Processes in the Flathead River Basin (Montana and British Columbia) ; 15. The Eastern Slopes of the Canadian Rockies: Must We Follow the American Blueprint? ; CONCLUSION Rocky Mountain Futures: Forecasting a Future We Do Not Want
    Type of Medium: Monograph available for loan
    Pages: XXVIII, 325, [8] S. : Ill., graph. Darst., Kt.
    ISBN: 1559639547
    Location: A 18 - must be ordered
    Branch Library: PIK Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 24 (1990), S. 758-760 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 19 (1983), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : The inorganic chemistry of two pairs of lakes in Rocky Mountain National Park was studied to determine reasons for their similarities and differences. The pairs were located on differing geologic units. It was expected that weathering from the different types of parent material would cause differing cation concentrations between the pairs. This was verified by dissimilar concentrations of those cations which are products of primary weathering. Unexpected was a significant difference in anion concentrations between members of one pair having the same bedrock geology. This difference has been attributed to the presence of a wet sedge meadow above one of the lakes which serves as a biological filter for anions, particularly nitrate and sulfate. It is shown that small scale drainage characteristics which can alter regional atmospheric contributions are important contributors to lake chemistry.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 36 (2000), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Notes: : Data from long-term ecosystem monitoring and research stations in North America and results of simulations made with interpretive models indicate that changes in climate (precipitation and temperature) can have a significant effect on the quality of surface waters. Changes in water quality during storms, snowmelt, and periods of elevated air temperature or drought can cause conditions that exceed thresholds of ecosystem tolerance and, thus, lead to water-quality degradation. If warming and changes in available moisture occur, water-quality changes will likely first occur during episodes of climate-induced stress, and in ecosystems where the factors controlling water quality are sensitive to climate variability. Continued climate stress would increase the frequency with which ecosystem thresholds are exceeded and thus lead to chronic water-quality changes. Management strategies in a warmer climate will therefore be needed that are based on local ecological thresholds rather than annual median condition. Changes in land use alter biological, physical, and chemical processes in watersheds and thus significantly alter the quality of adjacent surface waters; these direct human-caused changes complicate the interpretation of water-quality changes resulting from changes in climate, and can be both mitigated and exacerbated by climate change. A rigorous strategy for integrated, long-term monitoring of the ecological and human factors that control water quality is necessary to differentiate between actual and perceived climate effects, and to track the effectiveness of our environmental policies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: We present evidence that land use practices in the plains of Colorado influence regional climate and vegetation in adjacent natural areas in the Rocky Mountains in predictable ways. Mesoscale climate model simulations using the Colorado State University Regional Atmospheric Modelling System (RAMS) projected that modifications to natural vegetation in the plains, primarily due to agriculture and urbanization, could produce lower summer temperatures in the mountains. We corroborate the RAMS simulations with three independent sets of data: (i) climate records from 16 weather stations, which showed significant trends of decreasing July temperatures in recent decades; (ii) the distribution of seedlings of five dominant conifer species in Rocky Mountain National Park, Colorado, which suggested that cooler, wetter conditions occurred over roughly the same time period; and (iii) increased stream flow, normalized for changes in precipitation, during the summer months in four river basins, which also indicates cooler summer temperatures and lower transpiration at landscape scales. Combined, the mesoscale atmospheric/land-surface model, short-term trends in regional temperatures, forest distribution changes, and hydrology data indicate that the effects of land use practices on regional climate may overshadow larger-scale temperature changes commonly associated with observed increases in CO2 and other greenhouse gases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-2932
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Intensive sampling of a stream draining an alpine-subalpine basin revealed that depressions in pH and acid neutralizing capacity (ANC) of surface water at the beginning of the spring snowmelt in 1987 and 1988 were not accompanied by increases in strong acid anions, and that surface waters did not become acidic (ANC〈0). Samples of meltwater collected at the base of the snowpack in 1987 were acidic and exhibited distinct ‘pulses’ of nitrate and sulfate. Solutions collected with lysimeters in forest soils adjacent to the stream revealed high levels of dissolved organic carbon (DOC) and total Al. Peaks in concentration of DOC, Al, and nutrient species in the stream samples indicate a flush of soil solution into the surface water at the beginning of the melt. Infiltration of meltwater into soils and spatial heterogeneity in the timing of melting across the basin prevented stream and lake waters from becoming acidic.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1435-0629
    Keywords: Key words: landscape position; lake variability; lake districts; synchrony; coherence; north temperate lakes; lake chains; lake order; lake number; water residence time.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: ABSTRACT Although limnologists have long been interested in regional patterns in lake attributes, only recently have they considered lakes connected and organized across the landscape, rather than as spatially independent entities. Here we explore the spatial organization of lake districts through the concept of landscape position, a concept that considers lakes longitudinally along gradients of geomorphology and hydrology. We analyzed long-term chemical and biological data from nine lake chains (lakes in a series connected through surface or groundwater flow) from seven lake districts of diverse hydrologic and geomorphic settings across North America. Spatial patterns in lake variables driven by landscape position were surprisingly common across lake districts and across a wide range of variables. On the other hand, temporal patterns of lake variables, quantified using synchrony, the degree to which pairs of lakes exhibit similar dynamics through time, related to landscape position only for lake chains with lake water residence times that spanned a wide range and were generally long (close to or greater than 1 year). Highest synchrony of lakes within a lake chain occurred when lakes had short water residence times. Our results from both the spatial and temporal analyses suggest that certain features of the landscape position concept are robust enough to span a wide range of seemingly disparate lake types. The strong spatial patterns observed in this analysis, and some unexplained patterns, suggest the need to further study these scales and to continue to view lake ecosystems spatially, longitudinally, and broadly across the landscape.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1435-0629
    Keywords: Key words: nitrogen; Rocky Mountains; Colorado; subalpine forests; alpine and subalpine lakes; paleolimnology; diatoms; N isotopes.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract We asked whether 3–5 kg N y−1 atmospheric N deposition was sufficient to have influenced natural, otherwise undisturbed, terrestrial and aquatic ecosystems of the Colorado Front Range by comparing ecosystem processes and properties east and west of the Continental Divide. The eastern side receives elevated N deposition from urban, agricultural, and industrial sources, compared with 1–2 kg N y−1 on the western side. Foliage of east side old-growth Englemann spruce forests have significantly lower C:N and lignin:N ratios and greater N:Mg and N:P ratios. Soil % N is higher, and C:N ratios lower in the east side stands, and potential net N mineralization rates are greater. Lake NO3 concentrations are significantly higher in eastern lakes than western lakes. Two east side lakes studied paleolimnologically revealed rapid changes in diatom community composition and increased biovolumes and cell concentrations. The diatom flora is now representative of increased disturbance or eutrophication. Sediment nitrogen isotopic ratios have become progressively lighter over the past 50 years, coincident with the change in algal flora, possibly from an influx of isotopically light N volatilized from agricultural fields and feedlots. Seventy-five percent of the increased east side soil N pool can be accounted for by increased N deposition commensurate with human settlement. Nitrogen emissions from fixed, mobile, and agricultural sources have increased dramatically since approximately 1950 to the east of the Colorado Front Range, as they have in many parts of the world. Our findings indicate even slight increases in atmospheric deposition lead to measurable changes in ecosystem properties.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-515X
    Keywords: DOC ; alpine lakes ; autochthonous ; allochthonous ; subalpine lakes ; carbon isotopes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The sources of both dissolved organic carbon (DOC) and particulate organic carbon (POC) to an alpine (Sky Pond) and a subalpine lake (The Loch) in Rocky Mountain National Park were explored for four years. The importance of both autochthonous and allochthonous sources of organic matter differ, not only between alpine and subalpine locations, but also seasonally. Overall, autochthonous sources dominate the organic carbon of the alpine lake, while allochthonous sources are a more significant source of organic carbon to the subalpine lake. In the alpine lake, Sky Pond, POC makes up greater than one third of the total organic matter content of the water column, and is related to phytoplankton abundance. Dissolved organic carbon is a product of within-lake activity in Sky Pond except during spring snowmelt and early summer (May–July), when stable carbon isotope ratios suggest a terrestrial source. In the subalpine lake, The Loch, DOC is a much more important constituent of water column organic material than POC, comprising greater than 90% of the spring snowmelt organic matter, and greater than 75% of the organic matter over the rest of the year. Stable carbon isotope ratios and a very strong relation of DOC with soluble Al(tot) indicate DOC concentrations are almost entirely related to flushing of soil water from the surrounding watershed during spring snowmelt. Stable carbon isotope ratios indicate that, for both lakes, phytoplankton is an important source of DOC in the winter, while terrestrial material of plant or microbial origin contributes DOC during snowmelt and summer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-515X
    Keywords: alpine tundra ; aquatic ecosystems ; CENTURY model ; Colorado Rocky Mountains ; nitrogen saturation ; subalpine forest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract We employed grass and forest versions of the CENTURY model under a range of N deposition values (0.02–1.60 g N m−2 y−1) to explore the possibility that high observed lake and stream N was due to terrestrial N saturation of alpine tundra and subalpine forest in Loch Vale Watershed, Rocky Mountain National Park, Colorado. Model results suggest that N is limiting to subalpine forest productivity, but that excess leachate from alpine tundra is sufficient to account for the current observed stream N. Tundra leachate, combined with N leached from exposed rock surfaces, produce high N loads in aquatic ecosystems above treeline in the Colorado Front Range. A combination of terrestrial leaching, large N inputs from snowmelt, high watershed gradients, rapid hydrologic flushing and lake turnover times, and possibly other nutrient limitations of aquatic organisms constrain high elevation lakes and streams from assimilating even small increases in atmospheric N. CENTURY model simulations further suggest that, while increased N deposition will worsen the situation, nitrogen saturation is an ongoing phenomenon.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...