ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2020-06-16
    Description: During firing exercises in the military forces, safety accidents have occurred and caused nonbattle loss of human lives. Despite huge impact of the safety accidents in firing ranges on the military forces and civilians, the preventive measures have been limited and inflexible. In this study, to decrease the accident rate in small arm firing ranges, a methodology was presented to determine danger zones in firing ranges that resulted from direct bullets or ricochets during firing exercises. On the basis of ballistic theory and the actual terrain data surveyed by a drone, the danger zone of OO Firing Range was identified by schematizing the trajectories of the direct bullets and ricochets. The Monte Carlo simulation (MCS) with the accuracy of the small arm on the terrain data showed that the danger zone of the current firing range was limited due to topographic advantages. However, when human errors were included in the MCS, the danger zones were significantly enlarged. The methodology of the present study can provide a safety check-up model that identifies danger zones in the firing ranges used by the Army.
    Print ISSN: 1687-8086
    Electronic ISSN: 1687-8094
    Topics: Architecture, Civil Engineering, Surveying
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-21
    Description: Impact loading damage of reinforced concrete (RC) members deteriorates bond strength of reinforcing bars. To understand the effect of strain rate on the bond strength of reinforcing bars in RC beams under impact load, drop hammer test was performed on twenty-four simply supported RC beams with lap spliced bars at the mid-span. The test parameters were reinforcing bar diameter, splice length, drop height, and hammer mass. The dynamic responses including the impact load history, mid-span deflection history, crack distribution, and strain history of reinforcing bar were evaluated. Although the designed bar development length was 31–69% of the requirement of current design codes under static load, the tensile strength of bar splices was greater than the dynamic yield strength when subjected to large impact energy under impact load. On the basis of the test results, existing design equations for the bar development length under static load were modified to consider the impact loading effect on the bond strength. Factors related to the strain rate effect of materials, impact damage, and impact energy loss were proposed. The prediction of the proposed method agreed well with the tensile strength of bar splices under impact load.
    Print ISSN: 1976-0485
    Electronic ISSN: 2234-1315
    Topics: Architecture, Civil Engineering, Surveying
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-12-01
    Description: Recently, as a new precast concrete (PC) construction method for increasing economy and constructability, the PC double-beam system has been developed for factories or logistic centers, where construction duration is particularly important. In this study, half-scaled PC double beam–column connection was tested under gravity loading and cyclic lateral loading. The major test parameters included the use of the spliced PC column and the addition of reinforcement at the beam–column joint. In the gravity loading test, the flexural behavior of the PC double beam was investigated. The test results showed satisfactory flexural capacity at the PC double-beam section, validating the composite action between the PC and RC members. In the cyclic lateral loading test, the seismic performance of the PC double beam–column connection was investigated. Based on the test results, the failure mode, load-carrying capacity, deformation capacity, energy dissipation capacity, secant stiffness, and shear strength of the PC double-beam system were evaluated and compared with those of a conventional RC double beam–column connection. According to the test results, the structural performance of the PC double beam–column connection was comparable to that of the RC double beam–column connection and satisfied the acceptance criteria of moment frame in the ACI 374.1-05 provision.
    Print ISSN: 1976-0485
    Electronic ISSN: 2234-1315
    Topics: Architecture, Civil Engineering, Surveying
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-02-13
    Description: Multi-tee-type precast concrete (PC) slab systems are widely used for the construction of modular high-load long-span buildings. However, the structural safety of the dapped end is uncertain, owing to the unanchored shear reinforcement at the construction stage. This study proposes the use of clip-type shear reinforcement at the dapped ends of multi-tee PC slabs to secure their structural performance at the construction stage. To investigate the performance of this approach, a monotonic loading test was performed on simply supported PC slabs, considering structural safety at the construction stage. The reinforcement details of the PC slab’s dapped end (with existing Z-type or proposed clip-type shear reinforcement) and the shear-to-span ratio (12.8 or 6.4) were considered as test parameters. The load–deflection relationship, failure mode, strength ratios to the predicted strength, and shear reinforcement strains were analyzed. The results showed that the tested flexural strength ratio of the PC slabs at the construction stage to the design flexural strength was 1.20–1.40. The enclosed shape and diagonal arrangement of the clip-type shear reinforcement enabled sufficient anchorage performance at the dapped end, indicating that clip-type shear reinforcement can be viable for use at the dapped ends of PC slabs under construction loads.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...