ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1999-06-12
    Description: Gene-targeted mice lacking the L-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor subunit GluR-A exhibited normal development, life expectancy, and fine structure of neuronal dendrites and synapses. In hippocampal CA1 pyramidal neurons, GluR-A-/- mice showed a reduction in functional AMPA receptors, with the remaining receptors preferentially targeted to synapses. Thus, the CA1 soma-patch currents were strongly reduced, but glutamatergic synaptic currents were unaltered; and evoked dendritic and spinous Ca2+ transients, Ca2+-dependent gene activation, and hippocampal field potentials were as in the wild type. In adult GluR-A-/- mice, associative long-term potentiation (LTP) was absent in CA3 to CA1 synapses, but spatial learning in the water maze was not impaired. The results suggest that CA1 hippocampal LTP is controlled by the number or subunit composition of AMPA receptors and show a dichotomy between LTP in CA1 and acquisition of spatial memory.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Zamanillo, D -- Sprengel, R -- Hvalby, O -- Jensen, V -- Burnashev, N -- Rozov, A -- Kaiser, K M -- Koster, H J -- Borchardt, T -- Worley, P -- Lubke, J -- Frotscher, M -- Kelly, P H -- Sommer, B -- Andersen, P -- Seeburg, P H -- Sakmann, B -- New York, N.Y. -- Science. 1999 Jun 11;284(5421):1805-11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Neuroscience, Max-Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10364547" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Bicuculline/pharmacology ; Calcium/metabolism ; Dendrites/physiology/ultrastructure ; GABA Antagonists/pharmacology ; Gene Expression ; Gene Targeting ; Genes, Immediate-Early ; Glutamic Acid/pharmacology/physiology ; Hippocampus/cytology/physiology ; Long-Term Potentiation/*physiology ; *Maze Learning ; Mice ; Mice, Inbred C57BL ; Pyramidal Cells/*physiology/ultrastructure ; Receptors, AMPA/genetics/*physiology ; Receptors, N-Methyl-D-Aspartate/physiology ; Synapses/*physiology/ultrastructure ; Synaptic Transmission
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2001-06-30
    Description: Plasticity of mature hippocampal CA1 synapses is dependent on l-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptors containing the glutamate receptor A (GluR-A) subunit. In GluR-A-deficient mice, plasticity could be restored by controlled expression of green fluorescent protein (GFP)-tagged GluR-A, which contributes to channel formation and displayed the developmental redistribution of AMPA receptors in CA1 pyramidal neurons. Long-term potentiation (LTP) induced by pairing or tetanic stimulation was rescued in adult GluR-A(-/-) mice when (GFP)GluR-A expression was constitutive or induced in already fully developed pyramidal cells. This shows that GluR-A-independent forms of synaptic plasticity can mediate the establishment of mature hippocampal circuits that are prebuilt to express GluR-A-dependent LTP.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mack, V -- Burnashev, N -- Kaiser, K M -- Rozov, A -- Jensen, V -- Hvalby, O -- Seeburg, P H -- Sakmann, B -- Sprengel, R -- New York, N.Y. -- Science. 2001 Jun 29;292(5526):2501-4.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Neurobiology, Max-Planck-Institute for Medical Research, D-69120 Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11431570" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Dendrites/metabolism ; Doxycycline/pharmacology ; Electric Stimulation ; Excitatory Postsynaptic Potentials ; Green Fluorescent Proteins ; Hippocampus/metabolism/*physiology ; *Long-Term Potentiation ; Luminescent Proteins ; Mice ; Mice, Transgenic ; Neuronal Plasticity ; Patch-Clamp Techniques ; Pyramidal Cells/metabolism/*physiology ; Receptors, AMPA/genetics/*metabolism ; Recombinant Fusion Proteins/metabolism ; Synapses/metabolism/*physiology ; Transgenes
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 2000-08-11
    Description: Synaptic efficacy critically depends on the presynaptic intracellular calcium concentration ([Ca2+]i). We measured the calcium sensitivity of glutamate release in a rat auditory brainstem synapse by laser photolysis of caged calcium. A rise in [Ca2+]i to 1 micromolar readily evoked release. An increase to 〉30 micromolar depleted the releasable vesicle pool in 〈0.5 millisecond. A comparison with action potential-evoked release suggested that a brief increase of [Ca2+]i to approximately 10 micromolar would be sufficient to reproduce the physiological release pattern. Thus, the calcium sensitivity of release at this synapse is high, and the distinction between phasic and delayed release is less pronounced than previously thought.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bollmann, J H -- Sakmann, B -- Borst, J G -- New York, N.Y. -- Science. 2000 Aug 11;289(5481):953-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institute for Medical Research, Department of Cell Physiology, Jahnstrasse 29, D-69120 Heidelberg, Germany. jbollman@mpimf-heidelberg.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10937999" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Brain Stem/*metabolism ; Calcium/*metabolism ; Excitatory Postsynaptic Potentials ; Glutamic Acid/*metabolism ; Patch-Clamp Techniques ; Photolysis ; Presynaptic Terminals/metabolism ; Rats ; Rats, Wistar ; Synapses/*metabolism ; Synaptic Transmission ; Synaptic Vesicles/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1992-06-12
    Description: Glutamate-operated ion channels (GluR channels) of the L-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-kainate subtype are found in both neurons and glial cells of the central nervous system. These channels are assembled from the GluR-A, -B, -C, and -D subunits; channels containing a GluR-B subunit show an outwardly rectifying current-voltage relation and low calcium permeability, whereas channels lacking the GluR-B subunit are characterized by a doubly rectifying current-voltage relation and high calcium permeability. Most cell types in the central nervous system coexpress several subunits, including GluR-B. However, Bergmann glia in rat cerebellum do not express GluR-B subunit genes. In a subset of cultured cerebellar glial cells, likely derived from Bergmann glial cells. GluR channels exhibit doubly rectifying current-voltage relations and high calcium permeability, whereas GluR channels of cerebellar neurons have low calcium permeability. Thus, differential expression of the GluR-B subunit gene in neurons and glia is one mechanism by which functional properties of native GluR channels are regulated.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burnashev, N -- Khodorova, A -- Jonas, P -- Helm, P J -- Wisden, W -- Monyer, H -- Seeburg, P H -- Sakmann, B -- New York, N.Y. -- Science. 1992 Jun 12;256(5063):1566-70.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Medizinische Forschung, Abteilung Zellphysiologie, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1317970" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Calcium/*metabolism ; Cell Membrane Permeability ; Cells, Cultured ; Cerebellum/*physiology ; Gene Expression ; Glutamates/physiology ; In Vitro Techniques ; Ion Channel Gating ; Neuroglia/*physiology ; Nucleic Acid Hybridization ; RNA, Messenger/genetics ; Rats ; Receptors, Kainic Acid ; Receptors, Neurotransmitter/*physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1992-09-04
    Description: The N-methyl-D-aspartate (NMDA) receptor forms a cation-selective channel with a high calcium permeability and sensitivity to channel block by extracellular magnesium. These properties, which are believed to be important for the induction of long-term changes in synaptic strength, are imparted by asparagine residues in a putative channel-forming segment of the protein, transmembrane 2 (TM2). In the NR1 subunit, replacement of this asparagine by a glutamine residue decreases calcium permeability of the channel and slightly reduces magnesium block. The same substitution in NR2 subunits strongly reduces magnesium block and increases the magnesium permeability but barely affects calcium permeability. These asparagines are in a position homologous to the site in the TM2 region (Q/R site) of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors that is occupied by either glutamine (Q) or arginine (R) and that controls divalent cation permeability of the AMPA receptor channel. Hence AMPA and NMDA receptor channels contain common structural motifs in their TM2 segments that are responsible for some of their ion selectivity and conductance properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Burnashev, N -- Schoepfer, R -- Monyer, H -- Ruppersberg, J P -- Gunther, W -- Seeburg, P H -- Sakmann, B -- New York, N.Y. -- Science. 1992 Sep 4;257(5075):1415-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Abteilung Zellphysiologie, Max-Planck-Institut fur Medizinische Forschung, Heidelberg, Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1382314" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Asparagine/*chemistry ; Binding Sites ; Calcium/*metabolism/pharmacology ; Cell Line ; Electric Conductivity ; Glutamates/pharmacology ; Glutamic Acid ; Ion Channels/chemistry/*physiology ; Magnesium/metabolism/*pharmacology ; Mice ; Molecular Sequence Data ; Mutagenesis ; Oocytes/metabolism ; Permeability ; Rats ; Receptors, N-Methyl-D-Aspartate/chemistry/genetics/*physiology ; Structure-Activity Relationship ; Transfection ; Xenopus
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1990-08-03
    Description: Four cloned cDNAs encoding 900-amino acid putative glutamate receptors with approximately 70 percent sequence identity were isolated from a rat brain cDNA library. In situ hybridization revealed differential expression patterns of the cognate mRNAs throughout the brain. Functional expression of the cDNAs in cultured mammalian cells generated receptors displaying alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-selective binding pharmacology (AMPA = quisqualate greater than glutamate greater than kainate) as well as cation channels gated by glutamate, AMPA, and kainate and blocked by 6,7-dinitroquinoxaline-2,3-dione (CNQX).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Keinanen, K -- Wisden, W -- Sommer, B -- Werner, P -- Herb, A -- Verdoorn, T A -- Sakmann, B -- Seeburg, P H -- New York, N.Y. -- Science. 1990 Aug 3;249(4968):556-60.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuroendocrinology, University of Heidelberg, F.R.G.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2166337" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/*metabolism/physiology ; Glutamates/metabolism/pharmacology ; Ibotenic Acid/analogs & derivatives/*pharmacology ; Kainic Acid/pharmacology ; Kinetics ; Molecular Sequence Data ; *Multigene Family ; Oligonucleotide Probes ; Organ Specificity ; Oxadiazoles/pharmacology ; Oxazoles/*pharmacology ; Quisqualic Acid ; RNA, Messenger/analysis/genetics ; Rats ; Receptors, Glutamate ; Receptors, Neurotransmitter/drug effects/*genetics/physiology ; Sequence Homology, Nucleic Acid ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1990-09-28
    Description: In the central nervous system (CNS), the principal mediators of fast synaptic excitatory neurotransmission are L-glutamate-gated ion channels that are responsive to the glutamate agonist alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA). In each member of a family of four abundant AMPA receptors, a small segment preceding the predicted fourth transmembrane region has been shown to exist in two versions with different amino acid sequences. These modules, designated "flip" and "flop," are encoded by adjacent exons of the receptor genes and impart different pharmacological and kinetic properties on currents evoked by L-glutamate or AMPA, but not those evoked by kainate. For each receptor, the alternatively spliced messenger RNAs show distinct expression patterns in rat brain, particularly in the CA1 and CA3 fields of the hippocampus. These results identify a switch in the molecular and functional properties of glutamate receptors operated by alternative splicing.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Sommer, B -- Keinanen, K -- Verdoorn, T A -- Wisden, W -- Burnashev, N -- Herb, A -- Kohler, M -- Takagi, T -- Sakmann, B -- Seeburg, P H -- New York, N.Y. -- Science. 1990 Sep 28;249(4976):1580-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Molecular Neuroendocrinology, Center for Molecular Biology, University of Heidelberg, F.R.G.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1699275" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Base Sequence ; Brain/*metabolism ; DNA/genetics ; Exons ; Genomic Library ; Glutamates/*metabolism/pharmacology ; Ibotenic Acid/*analogs & derivatives/metabolism/pharmacology ; Ion Channels/*physiology ; Kinetics ; Molecular Sequence Data ; Oligonucleotide Probes ; Organ Specificity ; *RNA Splicing ; RNA, Messenger/*genetics ; Rats ; Receptors, AMPA ; Receptors, Glutamate ; Receptors, Neurotransmitter/drug effects/*genetics/physiology ; Recombinant Proteins/metabolism ; alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1991-06-21
    Description: Functional glutamate receptor (GluRs) were transiently expressed in cultured mammalian cells from cloned complementary DNAs encoding GluR-A, -B, -C, or -D polypeptides. The steady-state current-voltage (I-V) relations of glutamate- and kainate-induced currents through homomeric channels fell into two classes: channels composed of either the GluR-A, -C, and -D subunits showed doubly rectifying I-V curves, and channels composed of the GluR-B subunits displayed simple outward rectification. The presence of GluR-B subunits in heteromeric GluRs determined the I-V behavior of the resulting channels. Site-directed mutagenesis identified a single amino acid difference (glutamine to arginine) in the putative transmembrane segment TM2 responsible for subunit-specific I-V relationships. The properties of heteromeric wild-type and mutant GluRs revealed that the dominance of GluR-B is due to the arginine residue in the TM2 region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Verdoorn, T A -- Burnashev, N -- Monyer, H -- Seeburg, P H -- Sakmann, B -- New York, N.Y. -- Science. 1991 Jun 21;252(5013):1715-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur medizinische Forschung, Abteilung Zellphysiologie, Heidelberg, Federal Republic of Germany.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1710829" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Cloning, Molecular ; DNA Mutational Analysis ; Glutamates/physiology ; Humans ; Ion Channel Gating ; Ion Channels/*physiology ; Macromolecular Substances ; Membrane Glycoproteins/physiology ; Molecular Sequence Data ; Oligonucleotides/chemistry ; Receptors, Glutamate ; Receptors, Neurotransmitter/*physiology ; Recombinant Proteins ; Structure-Activity Relationship
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2006-06-17
    Description: Sensory stimuli reach the brain via the thalamocortical projection, a group of axons thought to be among the most powerful in the neocortex. Surprisingly, these axons account for only approximately 15% of synapses onto cortical neurons. The thalamocortical pathway might thus achieve its effectiveness via high-efficacy thalamocortical synapses or via amplification within cortical layer 4. In rat somatosensory cortex, we measured in vivo the excitatory postsynaptic potential evoked by a single synaptic connection and found that thalamocortical synapses have low efficacy. Convergent inputs, however, are both numerous and synchronous, and intracortical amplification is not required. Our results suggest a mechanism of cortical activation by which thalamic input alone can drive cortex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bruno, Randy M -- Sakmann, Bert -- New York, N.Y. -- Science. 2006 Jun 16;312(5780):1622-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Cell Physiology, Max Planck Institute for Medical Research, Jahnstrasse 29, 69120 Heidelberg, Germany. bruno@mpimf-heidelberg.mpg.de〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16778049" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Axons/physiology ; Dendrites/physiology ; Electric Stimulation ; Excitatory Postsynaptic Potentials ; Membrane Potentials ; Neural Pathways ; Neurons/*physiology ; Rats ; Rats, Wistar ; Somatosensory Cortex/cytology/*physiology ; Synapses/*physiology ; *Synaptic Transmission ; Thalamus/cytology/*physiology ; Vibrissae/innervation/physiology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1997-01-10
    Description: Activity-driven modifications in synaptic connections between neurons in the neocortex may occur during development and learning. In dual whole-cell voltage recordings from pyramidal neurons, the coincidence of postsynaptic action potentials (APs) and unitary excitatory postsynaptic potentials (EPSPs) was found to induce changes in EPSPs. Their average amplitudes were differentially up- or down-regulated, depending on the precise timing of postsynaptic APs relative to EPSPs. These observations suggest that APs propagating back into dendrites serve to modify single active synaptic connections, depending on the pattern of electrical activity in the pre- and postsynaptic neurons.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Markram, H -- Lubke, J -- Frotscher, M -- Sakmann, B -- New York, N.Y. -- Science. 1997 Jan 10;275(5297):213-5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Max-Planck-Institut fur Medizinische Forschung, Abteilung Zellphysiologie, Jahnstrasse 29, D-69120 Heidelberg, Germany. bnmark@weizmann.weizmann.ac.il〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8985014" target="_blank"〉PubMed〈/a〉
    Keywords: Action Potentials ; Animals ; Calcium/metabolism ; Cerebral Cortex/cytology/physiology ; Dendrites/*physiology ; Down-Regulation ; Electric Stimulation ; In Vitro Techniques ; Patch-Clamp Techniques ; Pyramidal Cells/*physiology ; Rats ; Rats, Wistar ; Receptors, N-Methyl-D-Aspartate/metabolism ; Synapses/*physiology ; *Synaptic Transmission ; Time Factors ; Up-Regulation
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...