ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2007-01-01
    Description: A set of reinforced concrete structures with gravitational loads and mechanical properties (strength and stiffness) representative of systems designed for earthquake resistance in accordance with current criteria and methods is selected to study the influence of dynamic soil-structure interaction on seismic response, ductility demands and reliability levels. The buildings are considered located at soft soil sites in the Valley of Mexico and subjected to ground motion time histories simulated in accordance with characteristic parameters of the maximum probable earthquake likely to occur during the system's expected life. For the near-resonance condition the effects of soil-structure interaction on the ductility demands depend mainly on radiation damping. According to the geometry of the structures studied this damping is strongly correlated with the aspect ratio, obtained by dividing the building height by its width. In this way, for structures with aspect ratio greater than 1.4 the storey and global ductility demands increase with respect to those obtained with the same structures but on rigid base, while for structures with aspect ratio less than 1.4 the ductility demands decrease with respect to those for the structures on rigid base. For the cases when the fundamental period of the structure has values very different from the dominant ground period, soil-structure interaction leads in all cases to a reduction of the ductility demands, independently of the aspect ratio. The reliability index β is obtained as a function of the base shear ratio and of the seismic intensity acting on the nonlinear systems subjected to the simulated motions. The resulting reliability functions are very similar for systems on rigid or on flexible foundation, provided that in the latter case the base rotation and the lateral displacement are removed from the total response of the system. Copyright © 2006 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-09-24
    Description: A previously developed simplified model of ground motion amplification is applied to the simulation of acceleration time histories at several soft-soil sites in the Valley of Mexico, on the basis of the corresponding records on firm ground. The main objective is to assess the ability of the model to reproduce characteristics such as effective duration, frequency content and instantaneous intensity. The model is based on the identification of a number of parameters that characterize the complex firm-ground to soft-soil transfer function, and on the adjustment of these parameters in order to account for non-linear soil behavior. Once the adjusted model parameters are introduced, the statistical properties of the simulated and the recorded ground motions agree reasonably well. For the sites and for the seismic events considered in this study, it is concluded that non-linear soil behavior may have a significant effect on the amplification of ground motion. The non-linear soil behavior significantly affects the effective ground motion duration for the components with the higher intensities, but it does not have any noticeable influence on the lengthening of the dominant ground period. © 2004 John Wiley & Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-09-01
    Description: A criterion is developed for the simulation of realistic artificial ground motion histories at soft-soil sites, corresponding to a detailed ground motion record at a reference firm-ground site. A complex transfer function is defined as the Fourier transform of the ground acceleration time history at the soft-soil site divided by the Fourier transform of the acceleration record at the firm-ground site. Working with both the real and the imaginary components of the transfer function, and not only with its modulus, serves to keep the statistical information about the wave phases (and, therefore, about the time variation of amplitudes and frequencies) in the algorithm used to generate the artificial records. Samples of these transfer functions, associated with a given pair of soft-soil and firm-ground sites, are empirically determined from the corresponding pairs of simultaneous records. Each function included in a sample is represented as the superposition of the transfer functions of the responses of a number of oscillators. This formulation is intended to account for the contributions of trains of waves following different patterns in the vicinity of both sites. The properties of the oscillators play the role of parameters of the transfer functions. They vary from one seismic event to another. Part of the variation is systematic, and can be explained in terms of the influence of ground motion intensity on the effective values of stiffness and damping of the artificial oscillators. Another part has random nature; it reflects the random characteristics of the wave propagation patterns associated with the different events. The semi-empirical model proposed recognizes both types of variation. The influence of intensity is estimated by means of a conventional one-dimensional shear wave propagation model. This model is used to derive an intensity-dependent modification of the values of the empirically determined model parameters in those cases when the firm-ground earthquake intensity used to determine these parameters differs from that corresponding to the seismic event for which the simulated records are to be obtained. © 2004 John Wiley and Sons, Ltd.
    Print ISSN: 0098-8847
    Electronic ISSN: 1096-9845
    Topics: Architecture, Civil Engineering, Surveying
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...