ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2021-04-29
    Description: Understanding the mechanism of CO2 reduction on iron is crucial for the design of more efficient and cheaper iron electrocatalyst for CO2 conversion. In the present study, we have employed spin-polarized density functional theory calculations within the generalized gradient approximation (DFT-GGA) to elucidate the mechanism of CO2 reduction into carbon monoxide and formic acid on the Fe (100) facet. We also sort to understand the transformations of the other isomers of adsorbed CO2 on iron as earlier mechanistic studies are centred on the transformations of the C2v geometry alone and not the other possible conformations i.e., flip-C2v and Cs modes. Two alternative reduction routes were considered i.e., the direct CO2 dissociation against the hydrogen-assisted CO2 transformation through formate and carboxylate into CO and formic acid. Our results show that CO2 in the C2v mode is the precursor to the formation of both products i.e., CO and formic acid. Both the formation and transformation of CO2 in the Cs and flip-C2v is challenging kinetically and thermodynamically compared to the C2v mode. The formic acid formation is favoured over CO via the reverse water gas shift reaction mechanism on Fe (100). Both formic acid formation and CO formation will proceed via the carboxylate intermediate since formate is a stable intermediate whose transformation into formic acid is challenging both kinetically and thermodynamically. Graphic abstract
    Print ISSN: 2194-1459
    Electronic ISSN: 2194-1467
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...