ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: A unique, interim elastomer-based resistive exercise device (iRED) is being used on the International Space Station. PURPOSE: This study characterized iRED training responses in a 1-g environment by: 1) determining whether 16 wk of high-intensity training with iRED produces increases in muscle strength and volume and bone mineral density (BMD), 2) comparing training responses with iRED to free weights, and 3) comparing iRED training responses at two training volumes. METHODS: Twenty-eight untrained men were assigned to four groups of seven subjects each: a no exercise control group (CON), an iRED group who trained with three sets/exercise (iRED3), a free-weight group (FW) who trained with three sets/exercise, and an iRED group who trained with six sets/exercise (iRED6). Training exercises included squat (SQ), heel raise (HR), and dead lift (DL) exercises, 3 d.wk(-1) for 16 wk. RESULTS: For CON, no changes occurred pre- to posttraining. For iRED3, increases (P〈 or =0.05) in one-repetition maximum (1-RM) strength (SQ 21 +/- 4%, HR 17 +/- 4%, DL 29 +/- 5%), leg lean mass (3.1 +/- 0.5%) by dual energy x-ray absorptiometry (DXA), and thigh (4.5 +/- 0.9%) and calf (5.9 +/- 0.7%) muscle volume (by magnetic resonance imaging) occurred after training with no changes in BMD (DXA). For FW, increases in 1-RM strength (SQ 22 +/- 5%, HR 24 +/- 3%, DL 41 +/- 7%), whole body (3.0 +/- 1.1%) and leg lean mass (5.4 +/- 1.2%), thigh (9.2 +/- 1.3%) and calf (4.2 +/- 1.0%) muscle volumes, and lumbar BMD (4.2 +/- 0.7%) occurred after training. For iRED6, all responses were similar to iRED3. CONCLUSION: High-intensity training with the iRED produced muscle responses similar to FW but was not effective in stimulating bone. Bed rest and spaceflight studies are needed to evaluate the effectiveness of the iRED to prevent microgravity deconditioning.
    Keywords: Life Sciences (General)
    Type: Medicine and science in sports and exercise (ISSN 0195-9131); Volume 35; 11; 1935-45
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-11
    Description: The purpose of this investigation was to determine the effect of different cadences on the ground reaction force (GRF(sub R)) during the squat exercise. It is known that squats performed with greater acceleration will produce greater inertial forces; however, it is not well understood how different squat cadences affect GRF(sub R). It was hypothesized that faster squat cadences will result in greater peak GRF(sub R). METHODS: Six male subjects (30.8+/-4.4 y, 179.5+/-8.9 cm, 88.8+/-13.3 kg) with previous squat experience performed three sets of three squats using three different cadences (FC = 1 sec descent/1 sec ascent; MC = 3 sec descent/1 sec ascent; SC = 4 sec descent/2 sec ascent) with barbell mass equal to body mass. Ground reaction force was used to calculate inertial force trajectories of the body plus barbell (FI(sub system)). Forces were normalized to body mass. RESULTS: Peak GRF(sub R) and peak FI(sub system) were significantly higher in FC squats compared to MC (p=0.0002) and SC (p=0.0002). Range of GRF(sub R) and FI(sub system) were also significantly higher in FC compared to MC (p〈0.05), and MC were significantly higher than SC (p〈0.05). DISCUSSION: Faster squat cadences result in significantly greater peak GRF(sub R) due to the inertia of the system. GRF(sub R) was more dependent upon decent cadence than on ascent cadence. PRACTICAL APPLICATION: This study demonstrates that faster squat cadences produce greater ground reaction forces. Therefore, the use of faster squat cadences might enhance strength and power adaptations to long-term resistance exercise training. Key Words: velocity, weight training, resistive exercise
    Keywords: Aerospace Medicine
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: Musculoskeletal unloading in microgravity has been shown to induce losses in bone mineral density, muscle cross-sectional area, and muscle strength. Currently, an Interim Resistive Exercise Device (iRED) is being flown on board the ISS to help counteract these losses. Free weight training has shown successful positive musculoskeletal adaptations. In biomechanical research, ground reaction forces (GRF) trajectories are used to define differences between exercise devices. The purpose of this evaluation is to quantify the differences in GRF between the iRED and free weight exercise performed on a Smith machine during a squat. Due to the differences in resistance properties, inertial loading and load application to the body between the two devices, we hypothesize that subjects using iRED will produce GRF that are significantly different from the Smith machine. There will be differences in bar/harness range of motion and the time when peak GRF occurred in the ROMbar. Three male subjects performed three sets of ten squats on the iRED and on the Smith Machine on two separate days at a 2-second cadence. Statistically significant differences were found between the two devices in all measured GRF variables. Average Fz and Fx during the Smith machine squat were significantly higher than iRED. Average Fy (16.82 plus or minus.23; p less than .043) was significantly lower during the Smith machine squat. The mean descent/ascent ratio of the magnitude of the resultant force vector of all three axes for the Smith machine and iRED was 0.95 and 0.72, respectively. Also, the point at which maximum Fz occurred in the range of motion (Dzpeak) was at different locations with the two devices.
    Keywords: Man/System Technology and Life Support
    Type: NASA/TP-2004-212063 , S-917 , JSC-CN-8115
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-12
    Description: To assess changes in muscular strength and endurance after microgravity exposure, NASA measures isokinetic strength and endurance across multiple sessions before and after long-duration space flight. Accurate interpretation of pre- and post-flight measures depends upon the reliability of each measure. The purpose of this study was to evaluate the test-retest reliability of the NASA International Space Station (ISS) isokinetic protocol. Twenty-four healthy subjects (12 M/12 F, 32.0 +/- 5.6 years) volunteered to participate. Isokinetic knee, ankle, and trunk flexion and extension strength as well as endurance of the knee flexors and extensors were measured using a Cybex NORM isokinetic dynamometer. The first weekly session was considered a familiarization session. Data were collected and analyzed for weeks 2-4. Repeated measures analysis of variance (alpha=0.05) was used to identify weekly differences in isokinetic measures. Test-retest reliability was evaluated by intraclass correlation coefficients (ICC) (3,1). No significant differences were found between weeks in any of the strength measures and the reliability of the strength measures were all considered excellent (ICC greater than 0.9), except for concentric ankle dorsi-flexion (ICC=0.67). Although a significant difference was noted in weekly endurance measures of knee extension (p less than 0.01), the reliability of endurance measure by week were considered excellent for knee flexion (ICC=0.97) and knee extension (ICC=0.96). Except for concentric ankle dorsi-flexion, the isokinetic strength and endurance measures are highly reliable when following the NASA ISS protocol. This protocol should allow accurate interpretation isokinetic data even with a small number of crew members.
    Keywords: Aerospace Medicine
    Type: JSC-CN-18042
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...