ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-06-12
    Description: Article CRISPR/Cas9-mediated forward genetic screens and gene-trap mutagenesis screens in haploid cells are both powerful techniques to examine gene function. Here, the authors show the two approaches have high concordance and identify an uncharacterized gene, TXNDC11 , which is involved in endoplasmic reticulum-associated degradation. Nature Communications doi: 10.1038/ncomms11786 Authors: Richard T. Timms, Sam A. Menzies, Iva A. Tchasovnikarova, Lea C. Christensen, James C. Williamson, Robin Antrobus, Gordon Dougan, Lars Ellgaard, Paul J. Lehner
    Electronic ISSN: 2041-1723
    Topics: Biology , Chemistry and Pharmacology , Natural Sciences in General , Physics
    Published by Springer Nature
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-02-04
    Description: Syncytins are genes of retroviral origin captured by eutherian mammals, with a role in placentation. Here we show that some marsupials—which are the closest living relatives to eutherian mammals, although they diverged from the latter ∼190 Mya—also possess a syncytin gene. The gene identified in the South American marsupial opossum...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-08-22
    Description: Marked changes in human dispersal and development during the Middle to Upper Paleolithic transition have been attributed to massive volcanic eruption and/or severe climatic deterioration. We test this concept using records of volcanic ash layers of the Campanian Ignimbrite eruption dated to ca. 40,000 y ago (40 ka B.P.). The...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-18
    Description: All cancers carry somatic mutations. A subset of these somatic alterations, termed driver mutations, confer selective growth advantage and are implicated in cancer development, whereas the remainder are passengers. Here we have sequenced the genomes of a malignant melanoma and a lymphoblastoid cell line from the same person, providing the first comprehensive catalogue of somatic mutations from an individual cancer. The catalogue provides remarkable insights into the forces that have shaped this cancer genome. The dominant mutational signature reflects DNA damage due to ultraviolet light exposure, a known risk factor for malignant melanoma, whereas the uneven distribution of mutations across the genome, with a lower prevalence in gene footprints, indicates that DNA repair has been preferentially deployed towards transcribed regions. The results illustrate the power of a cancer genome sequence to reveal traces of the DNA damage, repair, mutation and selection processes that were operative years before the cancer became symptomatic.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3145108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pleasance, Erin D -- Cheetham, R Keira -- Stephens, Philip J -- McBride, David J -- Humphray, Sean J -- Greenman, Chris D -- Varela, Ignacio -- Lin, Meng-Lay -- Ordonez, Gonzalo R -- Bignell, Graham R -- Ye, Kai -- Alipaz, Julie -- Bauer, Markus J -- Beare, David -- Butler, Adam -- Carter, Richard J -- Chen, Lina -- Cox, Anthony J -- Edkins, Sarah -- Kokko-Gonzales, Paula I -- Gormley, Niall A -- Grocock, Russell J -- Haudenschild, Christian D -- Hims, Matthew M -- James, Terena -- Jia, Mingming -- Kingsbury, Zoya -- Leroy, Catherine -- Marshall, John -- Menzies, Andrew -- Mudie, Laura J -- Ning, Zemin -- Royce, Tom -- Schulz-Trieglaff, Ole B -- Spiridou, Anastassia -- Stebbings, Lucy A -- Szajkowski, Lukasz -- Teague, Jon -- Williamson, David -- Chin, Lynda -- Ross, Mark T -- Campbell, Peter J -- Bentley, David R -- Futreal, P Andrew -- Stratton, Michael R -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jan 14;463(7278):191-6. doi: 10.1038/nature08658. Epub 2009 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016485" target="_blank"〉PubMed〈/a〉
    Keywords: Adult ; Cell Line, Tumor ; DNA Damage/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; Gene Dosage/genetics ; Genes, Neoplasm/*genetics ; Genome, Human/*genetics ; Humans ; Loss of Heterozygosity/genetics ; Male ; Melanoma/etiology/genetics ; MicroRNAs/genetics ; Mutagenesis, Insertional/genetics ; Mutation/*genetics ; Neoplasms/etiology/*genetics ; Polymorphism, Single Nucleotide/genetics ; Precision Medicine ; Sequence Deletion/genetics ; Ultraviolet Rays
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2010-10-29
    Description: Pancreatic cancer is an aggressive malignancy with a five-year mortality of 97-98%, usually due to widespread metastatic disease. Previous studies indicate that this disease has a complex genomic landscape, with frequent copy number changes and point mutations, but genomic rearrangements have not been characterized in detail. Despite the clinical importance of metastasis, there remain fundamental questions about the clonal structures of metastatic tumours, including phylogenetic relationships among metastases, the scale of ongoing parallel evolution in metastatic and primary sites, and how the tumour disseminates. Here we harness advances in DNA sequencing to annotate genomic rearrangements in 13 patients with pancreatic cancer and explore clonal relationships among metastases. We find that pancreatic cancer acquires rearrangements indicative of telomere dysfunction and abnormal cell-cycle control, namely dysregulated G1-to-S-phase transition with intact G2-M checkpoint. These initiate amplification of cancer genes and occur predominantly in early cancer development rather than the later stages of the disease. Genomic instability frequently persists after cancer dissemination, resulting in ongoing, parallel and even convergent evolution among different metastases. We find evidence that there is genetic heterogeneity among metastasis-initiating cells, that seeding metastasis may require driver mutations beyond those required for primary tumours, and that phylogenetic trees across metastases show organ-specific branches. These data attest to the richness of genetic variation in cancer, brought about by the tandem forces of genomic instability and evolutionary selection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137369/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3137369/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Campbell, Peter J -- Yachida, Shinichi -- Mudie, Laura J -- Stephens, Philip J -- Pleasance, Erin D -- Stebbings, Lucy A -- Morsberger, Laura A -- Latimer, Calli -- McLaren, Stuart -- Lin, Meng-Lay -- McBride, David J -- Varela, Ignacio -- Nik-Zainal, Serena A -- Leroy, Catherine -- Jia, Mingming -- Menzies, Andrew -- Butler, Adam P -- Teague, Jon W -- Griffin, Constance A -- Burton, John -- Swerdlow, Harold -- Quail, Michael A -- Stratton, Michael R -- Iacobuzio-Donahue, Christine -- Futreal, P Andrew -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- CA106610/CA/NCI NIH HHS/ -- CA140599/CA/NCI NIH HHS/ -- K08 CA106610/CA/NCI NIH HHS/ -- K08 CA106610-03/CA/NCI NIH HHS/ -- K08 CA106610-04/CA/NCI NIH HHS/ -- K08 CA106610-05/CA/NCI NIH HHS/ -- R01 CA140599/CA/NCI NIH HHS/ -- R01 CA140599-01/CA/NCI NIH HHS/ -- R01 CA140599-02/CA/NCI NIH HHS/ -- R01 CA140599-03/CA/NCI NIH HHS/ -- WT088340MA/Wellcome Trust/United Kingdom -- England -- Nature. 2010 Oct 28;467(7319):1109-13. doi: 10.1038/nature09460.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20981101" target="_blank"〉PubMed〈/a〉
    Keywords: Adenocarcinoma/genetics/pathology ; Cell Cycle/genetics ; Cell Lineage/genetics ; Clone Cells/metabolism/pathology ; DNA Mutational Analysis ; Disease Progression ; Evolution, Molecular ; Genes, Neoplasm/genetics ; Genomic Instability/*genetics ; Humans ; Liver Neoplasms/genetics/secondary ; Lung Neoplasms/genetics/secondary ; Mutagenesis/*genetics ; Neoplasm Metastasis/*genetics/pathology ; Organ Specificity ; Pancreatic Neoplasms/*genetics/*pathology ; Telomere/genetics/pathology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-12-18
    Description: Cancer is driven by mutation. Worldwide, tobacco smoking is the principal lifestyle exposure that causes cancer, exerting carcinogenicity through 〉60 chemicals that bind and mutate DNA. Using massively parallel sequencing technology, we sequenced a small-cell lung cancer cell line, NCI-H209, to explore the mutational burden associated with tobacco smoking. A total of 22,910 somatic substitutions were identified, including 134 in coding exons. Multiple mutation signatures testify to the cocktail of carcinogens in tobacco smoke and their proclivities for particular bases and surrounding sequence context. Effects of transcription-coupled repair and a second, more general, expression-linked repair pathway were evident. We identified a tandem duplication that duplicates exons 3-8 of CHD7 in frame, and another two lines carrying PVT1-CHD7 fusion genes, indicating that CHD7 may be recurrently rearranged in this disease. These findings illustrate the potential for next-generation sequencing to provide unprecedented insights into mutational processes, cellular repair pathways and gene networks associated with cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880489/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2880489/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Pleasance, Erin D -- Stephens, Philip J -- O'Meara, Sarah -- McBride, David J -- Meynert, Alison -- Jones, David -- Lin, Meng-Lay -- Beare, David -- Lau, King Wai -- Greenman, Chris -- Varela, Ignacio -- Nik-Zainal, Serena -- Davies, Helen R -- Ordonez, Gonzalo R -- Mudie, Laura J -- Latimer, Calli -- Edkins, Sarah -- Stebbings, Lucy -- Chen, Lina -- Jia, Mingming -- Leroy, Catherine -- Marshall, John -- Menzies, Andrew -- Butler, Adam -- Teague, Jon W -- Mangion, Jonathon -- Sun, Yongming A -- McLaughlin, Stephen F -- Peckham, Heather E -- Tsung, Eric F -- Costa, Gina L -- Lee, Clarence C -- Minna, John D -- Gazdar, Adi -- Birney, Ewan -- Rhodes, Michael D -- McKernan, Kevin J -- Stratton, Michael R -- Futreal, P Andrew -- Campbell, Peter J -- 077012/Wellcome Trust/United Kingdom -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- P50 CA070907/CA/NCI NIH HHS/ -- P50CA70907/CA/NCI NIH HHS/ -- England -- Nature. 2010 Jan 14;463(7278):184-90. doi: 10.1038/nature08629. Epub 2009 Dec 16.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016488" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinogens/toxicity ; Cell Line, Tumor ; DNA Copy Number Variations/drug effects/genetics ; DNA Damage/genetics ; DNA Helicases/genetics ; DNA Mutational Analysis ; DNA Repair/genetics ; DNA-Binding Proteins/genetics ; Exons/genetics ; Gene Expression Regulation, Neoplastic/drug effects ; Genome, Human/drug effects/genetics ; Humans ; Lung Neoplasms/*etiology/*genetics ; Mutagenesis, Insertional/drug effects/genetics ; Mutation/drug effects/*genetics ; Promoter Regions, Genetic/genetics ; Sequence Deletion/genetics ; Small Cell Lung Carcinoma/*etiology/*genetics ; Smoking/*adverse effects ; Tobacco/*adverse effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-08-02
    Description: Long interspersed nuclear element-1 (L1) retrotransposons are mobile repetitive elements that are abundant in the human genome. L1 elements propagate through RNA intermediates. In the germ line, neighboring, nonrepetitive sequences are occasionally mobilized by the L1 machinery, a process called 3' transduction. Because 3' transductions are potentially mutagenic, we explored the extent to which they occur somatically during tumorigenesis. Studying cancer genomes from 244 patients, we found that tumors from 53% of the patients had somatic retrotranspositions, of which 24% were 3' transductions. Fingerprinting of donor L1s revealed that a handful of source L1 elements in a tumor can spawn from tens to hundreds of 3' transductions, which can themselves seed further retrotranspositions. The activity of individual L1 elements fluctuated during tumor evolution and correlated with L1 promoter hypomethylation. The 3' transductions disseminated genes, exons, and regulatory elements to new locations, most often to heterochromatic regions of the genome.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380235/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4380235/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tubio, Jose M C -- Li, Yilong -- Ju, Young Seok -- Martincorena, Inigo -- Cooke, Susanna L -- Tojo, Marta -- Gundem, Gunes -- Pipinikas, Christodoulos P -- Zamora, Jorge -- Raine, Keiran -- Menzies, Andrew -- Roman-Garcia, Pablo -- Fullam, Anthony -- Gerstung, Moritz -- Shlien, Adam -- Tarpey, Patrick S -- Papaemmanuil, Elli -- Knappskog, Stian -- Van Loo, Peter -- Ramakrishna, Manasa -- Davies, Helen R -- Marshall, John -- Wedge, David C -- Teague, Jon W -- Butler, Adam P -- Nik-Zainal, Serena -- Alexandrov, Ludmil -- Behjati, Sam -- Yates, Lucy R -- Bolli, Niccolo -- Mudie, Laura -- Hardy, Claire -- Martin, Sancha -- McLaren, Stuart -- O'Meara, Sarah -- Anderson, Elizabeth -- Maddison, Mark -- Gamble, Stephen -- ICGC Breast Cancer Group -- ICGC Bone Cancer Group -- ICGC Prostate Cancer Group -- Foster, Christopher -- Warren, Anne Y -- Whitaker, Hayley -- Brewer, Daniel -- Eeles, Rosalind -- Cooper, Colin -- Neal, David -- Lynch, Andy G -- Visakorpi, Tapio -- Isaacs, William B -- van't Veer, Laura -- Caldas, Carlos -- Desmedt, Christine -- Sotiriou, Christos -- Aparicio, Sam -- Foekens, John A -- Eyfjord, Jorunn Erla -- Lakhani, Sunil R -- Thomas, Gilles -- Myklebost, Ola -- Span, Paul N -- Borresen-Dale, Anne-Lise -- Richardson, Andrea L -- Van de Vijver, Marc -- Vincent-Salomon, Anne -- Van den Eynden, Gert G -- Flanagan, Adrienne M -- Futreal, P Andrew -- Janes, Sam M -- Bova, G Steven -- Stratton, Michael R -- McDermott, Ultan -- Campbell, Peter J -- 088340/Wellcome Trust/United Kingdom -- 091730/Wellcome Trust/United Kingdom -- 14835/Cancer Research UK/United Kingdom -- C5047/A14835/Cancer Research UK/United Kingdom -- G0900871/Medical Research Council/United Kingdom -- P30 CA006973/CA/NCI NIH HHS/ -- WT100183MA/Wellcome Trust/United Kingdom -- Department of Health/United Kingdom -- New York, N.Y. -- Science. 2014 Aug 1;345(6196):1251343. doi: 10.1126/science.1251343.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. ; Department of Physiology, School of Medicine-Center for Resesarch in Molecular Medicine and Chronic Diseases, Instituto de Investigaciones Sanitarias, University of Santiago de Compostela, Spain. ; Lungs for Living Research Centre, Rayne Institute, University College London (UCL), London, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Department of Clinical Science, University of Bergen, Bergen, Norway. Department of Oncology, Haukeland University Hospital, Bergen, Norway. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Human Genome Laboratory, Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Department of Haematology, University of Cambridge, Cambridge, UK. ; University of Liverpool and HCA Pathology Laboratories, London, UK. ; Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK. ; Cancer Research UK (CRUK) Cambridge Institute, University of Cambridge, Cambridge, UK. ; Institute of Cancer Research, Sutton, London, UK. University of East Anglia, Norwich, UK. ; Institute of Cancer Research, Sutton, London, UK. ; Institute of Biosciences and Medical Technology-BioMediTech, University of Tampere and Tampere University Hospital, Tampere, Finland. ; Johns Hopkins University, Baltimore, MD, USA. ; Netherlands Cancer Institute, Amsterdam, Netherlands. ; Breast Cancer Translational Research Laboratory, Institut Jules Bordet, Universite Libre de Bruxelles, Brussels, Belgium. ; British Columbia Cancer Agency, Vancouver, Canada. ; Department of Medical Oncology, Erasmus Medical Center Cancer Institute, Erasmus University Medical Center, Rotterdam, Netherlands. ; Cancer Research Laboratory, University of Iceland, Reykjavik, Iceland. ; School of Medicine, University of Queensland, Brisbane, Australia. Pathology Queensland, Royal Brisbane and Women's Hospital, Brisbane, Australia. UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia. ; Universite Lyon 1, Institut National du Cancer (INCa)-Synergie, Lyon, France. ; Institute for Cancer Research, Oslo University Hospital, Oslo, Norway. ; Department of Radiation Oncology and Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands. ; Dana-Farber Cancer Institute, Boston, MA, USA. ; Department of Pathology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, Netherlands. ; Institut Bergonie, 229 cours de l'Argone, 33076 Bordeaux, France. Institut Curie, Department of Tumor Biology, 26 rue d'Ulm, 75248 Paris cedex 05, France. ; Translational Cancer Research Unit and Department of Pathology, GZA Hospitals, Antwerp, Belgium. ; Royal National Orthopaedic Hospital, Middlesex, UK. UCL Cancer Institute, University College London, London, UK. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. MD Anderson Cancer Center, Houston, TX, USA. ; Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, UK. Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge, UK. Department of Haematology, University of Cambridge, Cambridge, UK. pc8@sanger.ac.uk.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25082706" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinogenesis/genetics ; Chromatin/chemistry ; *DNA Transposable Elements ; Exons ; Genome, Human ; Humans ; *Long Interspersed Nucleotide Elements ; Mutagenesis, Insertional ; Neoplasms/*genetics ; *Transduction, Genetic ; Translocation, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-01-21
    Description: The genetics of renal cancer is dominated by inactivation of the VHL tumour suppressor gene in clear cell carcinoma (ccRCC), the commonest histological subtype. A recent large-scale screen of approximately 3,500 genes by PCR-based exon re-sequencing identified several new cancer genes in ccRCC including UTX (also known as KDM6A), JARID1C (also known as KDM5C) and SETD2 (ref. 2). These genes encode enzymes that demethylate (UTX, JARID1C) or methylate (SETD2) key lysine residues of histone H3. Modification of the methylation state of these lysine residues of histone H3 regulates chromatin structure and is implicated in transcriptional control. However, together these mutations are present in fewer than 15% of ccRCC, suggesting the existence of additional, currently unidentified cancer genes. Here, we have sequenced the protein coding exome in a series of primary ccRCC and report the identification of the SWI/SNF chromatin remodelling complex gene PBRM1 (ref. 4) as a second major ccRCC cancer gene, with truncating mutations in 41% (92/227) of cases. These data further elucidate the somatic genetic architecture of ccRCC and emphasize the marked contribution of aberrant chromatin biology.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030920/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3030920/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Varela, Ignacio -- Tarpey, Patrick -- Raine, Keiran -- Huang, Dachuan -- Ong, Choon Kiat -- Stephens, Philip -- Davies, Helen -- Jones, David -- Lin, Meng-Lay -- Teague, Jon -- Bignell, Graham -- Butler, Adam -- Cho, Juok -- Dalgliesh, Gillian L -- Galappaththige, Danushka -- Greenman, Chris -- Hardy, Claire -- Jia, Mingming -- Latimer, Calli -- Lau, King Wai -- Marshall, John -- McLaren, Stuart -- Menzies, Andrew -- Mudie, Laura -- Stebbings, Lucy -- Largaespada, David A -- Wessels, L F A -- Richard, Stephane -- Kahnoski, Richard J -- Anema, John -- Tuveson, David A -- Perez-Mancera, Pedro A -- Mustonen, Ville -- Fischer, Andrej -- Adams, David J -- Rust, Alistair -- Chan-on, Waraporn -- Subimerb, Chutima -- Dykema, Karl -- Furge, Kyle -- Campbell, Peter J -- Teh, Bin Tean -- Stratton, Michael R -- Futreal, P Andrew -- 077012/Wellcome Trust/United Kingdom -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- R01 CA113636/CA/NCI NIH HHS/ -- R01 CA134759/CA/NCI NIH HHS/ -- Cancer Research UK/United Kingdom -- England -- Nature. 2011 Jan 27;469(7331):539-42. doi: 10.1038/nature09639. Epub 2011 Jan 19.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21248752" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Carcinoma, Renal Cell/*genetics ; Cell Line, Tumor ; Disease Models, Animal ; Gene Expression Regulation ; Gene Knockdown Techniques ; Humans ; Kidney Neoplasms/*genetics ; Mice ; Mutation/*genetics ; Nuclear Proteins/*genetics/*metabolism ; Pancreatic Neoplasms/genetics ; Transcription Factors/*genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-01-08
    Description: Clear cell renal cell carcinoma (ccRCC) is the most common form of adult kidney cancer, characterized by the presence of inactivating mutations in the VHL gene in most cases, and by infrequent somatic mutations in known cancer genes. To determine further the genetics of ccRCC, we have sequenced 101 cases through 3,544 protein-coding genes. Here we report the identification of inactivating mutations in two genes encoding enzymes involved in histone modification-SETD2, a histone H3 lysine 36 methyltransferase, and JARID1C (also known as KDM5C), a histone H3 lysine 4 demethylase-as well as mutations in the histone H3 lysine 27 demethylase, UTX (KMD6A), that we recently reported. The results highlight the role of mutations in components of the chromatin modification machinery in human cancer. Furthermore, NF2 mutations were found in non-VHL mutated ccRCC, and several other probable cancer genes were identified. These results indicate that substantial genetic heterogeneity exists in a cancer type dominated by mutations in a single gene, and that systematic screens will be key to fully determining the somatic genetic architecture of cancer.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820242/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2820242/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Dalgliesh, Gillian L -- Furge, Kyle -- Greenman, Chris -- Chen, Lina -- Bignell, Graham -- Butler, Adam -- Davies, Helen -- Edkins, Sarah -- Hardy, Claire -- Latimer, Calli -- Teague, Jon -- Andrews, Jenny -- Barthorpe, Syd -- Beare, Dave -- Buck, Gemma -- Campbell, Peter J -- Forbes, Simon -- Jia, Mingming -- Jones, David -- Knott, Henry -- Kok, Chai Yin -- Lau, King Wai -- Leroy, Catherine -- Lin, Meng-Lay -- McBride, David J -- Maddison, Mark -- Maguire, Simon -- McLay, Kirsten -- Menzies, Andrew -- Mironenko, Tatiana -- Mulderrig, Lee -- Mudie, Laura -- O'Meara, Sarah -- Pleasance, Erin -- Rajasingham, Arjunan -- Shepherd, Rebecca -- Smith, Raffaella -- Stebbings, Lucy -- Stephens, Philip -- Tang, Gurpreet -- Tarpey, Patrick S -- Turrell, Kelly -- Dykema, Karl J -- Khoo, Sok Kean -- Petillo, David -- Wondergem, Bill -- Anema, John -- Kahnoski, Richard J -- Teh, Bin Tean -- Stratton, Michael R -- Futreal, P Andrew -- 077012/Wellcome Trust/United Kingdom -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 082359/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- England -- Nature. 2010 Jan 21;463(7279):360-3. doi: 10.1038/nature08672. Epub 2010 Jan 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20054297" target="_blank"〉PubMed〈/a〉
    Keywords: Carcinoma, Renal Cell/*genetics/pathology ; Cell Hypoxia/genetics ; Chromatin/metabolism ; Gene Expression Regulation, Neoplastic ; *Genes, Neurofibromatosis 2 ; Histone Demethylases ; Histone-Lysine N-Methyltransferase/*genetics ; Histones/*metabolism ; Humans ; Kidney Neoplasms/*genetics/pathology ; Mutation/genetics ; Nuclear Proteins/*genetics ; Oxidoreductases, N-Demethylating/*genetics ; Sequence Analysis, DNA
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2012-06-23
    Description: All cancers carry somatic mutations in their genomes. A subset, known as driver mutations, confer clonal selective advantage on cancer cells and are causally implicated in oncogenesis, and the remainder are passenger mutations. The driver mutations and mutational processes operative in breast cancer have not yet been comprehensively explored. Here we examine the genomes of 100 tumours for somatic copy number changes and mutations in the coding exons of protein-coding genes. The number of somatic mutations varied markedly between individual tumours. We found strong correlations between mutation number, age at which cancer was diagnosed and cancer histological grade, and observed multiple mutational signatures, including one present in about ten per cent of tumours characterized by numerous mutations of cytosine at TpC dinucleotides. Driver mutations were identified in several new cancer genes including AKT2, ARID1B, CASP8, CDKN1B, MAP3K1, MAP3K13, NCOR1, SMARCD1 and TBX3. Among the 100 tumours, we found driver mutations in at least 40 cancer genes and 73 different combinations of mutated cancer genes. The results highlight the substantial genetic diversity underlying this common disease.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428862/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3428862/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Stephens, Philip J -- Tarpey, Patrick S -- Davies, Helen -- Van Loo, Peter -- Greenman, Chris -- Wedge, David C -- Nik-Zainal, Serena -- Martin, Sancha -- Varela, Ignacio -- Bignell, Graham R -- Yates, Lucy R -- Papaemmanuil, Elli -- Beare, David -- Butler, Adam -- Cheverton, Angela -- Gamble, John -- Hinton, Jonathan -- Jia, Mingming -- Jayakumar, Alagu -- Jones, David -- Latimer, Calli -- Lau, King Wai -- McLaren, Stuart -- McBride, David J -- Menzies, Andrew -- Mudie, Laura -- Raine, Keiran -- Rad, Roland -- Chapman, Michael Spencer -- Teague, Jon -- Easton, Douglas -- Langerod, Anita -- Oslo Breast Cancer Consortium (OSBREAC) -- Lee, Ming Ta Michael -- Shen, Chen-Yang -- Tee, Benita Tan Kiat -- Huimin, Bernice Wong -- Broeks, Annegien -- Vargas, Ana Cristina -- Turashvili, Gulisa -- Martens, John -- Fatima, Aquila -- Miron, Penelope -- Chin, Suet-Feung -- Thomas, Gilles -- Boyault, Sandrine -- Mariani, Odette -- Lakhani, Sunil R -- van de Vijver, Marc -- van 't Veer, Laura -- Foekens, John -- Desmedt, Christine -- Sotiriou, Christos -- Tutt, Andrew -- Caldas, Carlos -- Reis-Filho, Jorge S -- Aparicio, Samuel A J R -- Salomon, Anne Vincent -- Borresen-Dale, Anne-Lise -- Richardson, Andrea L -- Campbell, Peter J -- Futreal, P Andrew -- Stratton, Michael R -- 077012/Z/05/Z/Wellcome Trust/United Kingdom -- 088340/Wellcome Trust/United Kingdom -- 093867/Wellcome Trust/United Kingdom -- 10118/Cancer Research UK/United Kingdom -- CA089393/CA/NCI NIH HHS/ -- P30 CA016672/CA/NCI NIH HHS/ -- WT088340MA/Wellcome Trust/United Kingdom -- Cancer Research UK/United Kingdom -- Chief Scientist Office/United Kingdom -- Department of Health/United Kingdom -- England -- Nature. 2012 May 16;486(7403):400-4. doi: 10.1038/nature11017.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22722201" target="_blank"〉PubMed〈/a〉
    Keywords: Age Factors ; Breast Neoplasms/classification/*genetics/pathology ; Cell Transformation, Neoplastic/*genetics ; Cytosine/metabolism ; DNA Mutational Analysis ; Female ; Humans ; JNK Mitogen-Activated Protein Kinases/metabolism ; Mutagenesis/*genetics ; Mutation/*genetics ; Neoplasm Grading ; Oncogenes/*genetics ; Reproducibility of Results ; Signal Transduction/genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...