ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Online Resource
    Online Resource
    Cham :Springer International Publishing :
    Keywords: Parasitology. ; Microbiology. ; Medical microbiology. ; Parasitology. ; Microbiology. ; Medical Microbiology.
    Description / Table of Contents: Chapter 1: Impact of genome reduction in microsporidia -- Chapter 2: Comparative genomics of microsporidia -- Chapter 3: Insights into microsporidia evolution from early diverging microsporidia -- Chapter 4: Factors that determine microsporidia infection and host specificity -- Chapter 5: Insights from Caenorhabditis elegans into microsporidia biology and host-pathogen relationships -- Chapter 6: Advances in the genetic manipulation of Nosema bombycis -- Chapter 7: Nosema apis and N. ceranae infection in honey bees: a model for host-pathogen interactions in insects -- Chapter 8: The Function and Structure of the Microsporidia Polar Tube -- Chapter 9: Mechanics of microsporidian polar tube firing -- Chapter 10: Microsporidian Pathogens of Aquatic Animals -- Chapter 11: Recent Advances with Fish Microsporidia -- Chapter 12: Chronic Infections in mammals due to microsporidia -- Chapter 13: Immune responses to microsporidia -- Chapter 14: A perspective on the molecular identification, classification and epidemiology of Enterocytozoon bieneusi of animals.
    Abstract: This book provides an up-to-date overview on the biology of microsporidia, focusing on areas where significant progress has been made in recent years. In particular, our understanding of the evolutionary position and the role of genome reduction in the biology of these enigmatic intracellular pathogens is discussed. This book also offers important updates on the mechanisms used by these organisms to modify the host cell biology of mammals, insects, nematodes, and aquatic animals, as well as the mechanisms controlling infection and host specificity. Readers gain a detailed overview of the structure and function of the polar tube, the unique invasion apparatus of microsporidia, as well as the physics and dynamics of spore firing. Particular attention is given to chronic infections in mammals caused by microsporidia, as well as common immune responses. Written by an international team of authors representing the main research groups working on microsporidian biology, this book is a valuable resource for health management professionals, experienced microbiologists, and early career scientist alike who want to learn more about these fascinating parasites. The ideas and latest finding covered in this book contribute to UN Sustainable Development Goal 3: Good Health and Well-Being. Chapter “Impact of Genome Reduction in Microsporidia“ is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
    Type of Medium: Online Resource
    Pages: X, 415 p. 66 illus., 50 illus. in color. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9783030933067
    Series Statement: Experientia Supplementum, 114
    DDC: 571.999
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution-Noncommercial 2.5 License. The definitive version was published in Genome Biology and Evolution 2 (2010): 304, doi:10.1093/gbe/evq022.
    Description: Reduction of various biological processes is a hallmark of the parasitic lifestyle. Generally, the more intimate the association between parasites and hosts the stronger the parasite relies on its host's physiology for survival and reproduction. However, some systems have been held to be indispensable, for example, the core pathways of carbon metabolism that produce energy from sugars. Even the most hardened anaerobes that lack oxidative phosphorylation and the tricarboxylic acid cycle have retained glycolysis and some downstream means to generate ATP. Here we describe the deep-coverage genome resequencing of the pathogenic microsporidiian, Enterocytozoon bieneusi, which shows that this parasite has crossed this line and abandoned complete pathways for the most basic carbon metabolism. Comparing two genome sequence surveys of E. bieneusi to genomic data from four other microsporidia reveals a normal complement of 353 genes representing 30 functional pathways in E. bieneusi, except that only 2 out of 21 genes collectively involved in glycolysis, pentose phosphate, and trehalose metabolism are present. Similarly, no genes encoding proteins involved in the processing of spliceosomal introns were found. Altogether, E. bieneusi appears to have no fully functional pathway to generate ATP from glucose. Therefore, this intracellular parasite relies on transporters to import ATP from its host.
    Description: This work was supported by grants from the Canadian Institutes for Health Research (MOP-84265), the National Institutes of Health (NIH AI31788, R21 AI52792, and R21 AI064118), and the National Science Foundation (MCB- 0135272). N.C. is a Scholar of the Canadian Institute for Advanced Research and is supported by a fellowship from the Swiss National Science Foundation (NSF) (PA00P3- 124166). D.E. is supported by the Swiss NSF. P.J.K. is a Fellow of the Canadian Institute for Advanced Research and a Senior Scholar of the Michael Smith Foundation for Health Research.
    Keywords: Microsporidia ; Parasite ; Glycolysis ; Carbon metabolism ; Reduction ; Evolution
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/vnd.ms-excel
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-26
    Description: © 2009 The Authors. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS Pathogens 5 (2009): e1000261, doi:10.1371/journal.ppat.1000261.
    Description: Enterocytozoon bieneusi is the most common microsporidian associated with human disease, particularly in the immunocompromised population. In the setting of HIV infection, it is associated with diarrhea and wasting syndrome. Like all microsporidia, E. bieneusi is an obligate, intracellular parasite, but unlike others, it is in direct contact with the host cell cytoplasm. Studies of E. bieneusi have been greatly limited due to the absence of genomic data and lack of a robust cultivation system. Here, we present the first large-scale genomic dataset for E. bieneusi. Approximately 3.86 Mb of unique sequence was generated by paired end Sanger sequencing, representing about 64% of the estimated 6 Mb genome. A total of 3,804 genes were identified in E. bieneusi, of which 1,702 encode proteins with assigned functions. Of these, 653 are homologs of Encephalitozoon cuniculi proteins. Only one E. bieneusi protein with assigned function had no E. cuniculi homolog. The shared proteins were, in general, evenly distributed among the functional categories, with the exception of a dearth of genes encoding proteins associated with pathways for fatty acid and core carbon metabolism. Short intergenic regions, high gene density, and shortened protein-coding sequences were observed in the E. bieneusi genome, all traits consistent with genomic compaction. Our findings suggest that E. bieneusi is a likely model for extreme genome reduction and host dependence.
    Description: This research was supported by National Institutes of Health (NIH) grants R21 AI064118 (DEA) and R21 AI52792 (ST). HGM was supported in part by NIH contracts HHSN266200400041C and HHSN2662004037C (Bioinformatics Resource Centers) and by the G. Unger Vetlesen Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/msword
    Format: image/tiff
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 51 (2004), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The genus Brachiola is the newest microsporidian genus established for a human infection with the type species being B. vesicularum in skeletal muscle. Subsequently, the microsporidium, Nosema algerae, identified from mosquitoes, was added to this genus because of morphological and physiological similarities. The present report illustrates a confirmed case of Brachiola algerae infecting skeletal muscle in a 56-year-old woman who was being treated for rheumatoid arthritis with immunosuppressive drugs. In the following study, these two human-infecting microsporidian species are ultrastructurally compared from human biopsy tissue. Additionally, Brachiola algerae from mosquitoes as reference B. algerae, was grown in athymic mice and compared to the human isolate in vivo, and in culture. B. algerae is morphologically identical in the host situations presented and different from B. vesicularum in human skeletal muscle. B. algerae has a consistently, slightly longer spore that typically contains one row of polar filament coils, while B. vesicularum typically contains two rows of polar filament coils and occasionally, one or three rows. In proliferative development, B. vesicularum forms protoplasmic extensions which do not occur on B. algerae, nor have they been reported on any other microsporidium. This report demonstrates that B. vesicularum and B. algerae are two different species of Brachiola that infect human skeletal muscle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 50 (2003), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 50 (2003), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 48 (2001), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 46 (1999), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    The @journal of eukaryotic microbiology 46 (1999), S. 0 
    ISSN: 1550-7408
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Encephalitozoonidae are microsporidia associated with human infections including hepatitis, encephalitis, conjunctivitis, and disseminated disease. Microsporidia produce a small resistant spore containing a polar tube which serves as a unique vehicle of infection. Polar tube proteins (PTPs) from Encephalitozoon hellem, Encephalitozoon (Septata) intestinalis, and Encephalitozoon cuniculi were purified to homogeneity by HPLC. By SDS-PAGE, the Mr of E. hellem PTP was 55 kDa, while the Mr of E. intestinalis and E. cuniculi PTP was 45 kDa. Polyclonal rabbit antiserum to these purified PTPs localized to polar filaments by immunogold electron microscopy and immunofluorescence, and demonstrated cross-reactivity by both immunoblotting and immunogold electron microscopy. These PTPs have similar solubility properties, hydrophobicity, and proline content to a 43-kDa PTP we have previously purified from Glugea americanus, a fish microsporidium. As the polar tube is critical in the transmission of this organism, further study of PTPs may lead to the development of new therapeutic strategies and diagnostic tests.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...