ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Transport of alkali, metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. The temperature dependence of the diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and preexponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: In: IECEC '92; Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 3-7, 1992. Vol. 3 (A93-25851 09-44); p. 3.19-3.24.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Electrode materials for the Alkali Metal Thermal to Electric Converter (AMTEC) play a significant role in the efficiency of the device. RhW and PtW alloys have been studied to determine the best performing material. While RhW electrodes typically have power densities somewhat lower than PtW electrodes, PtW performance is strongly influenced by the Pt/W ratio. The best performing Pt/W ratio is about 3.4. RhW electrodes sinter more slowly than PtW and are predicted to have operating lifetimes up to 40 years; PtW electrodes are predicted to have lifetimes up to 7 years. Interaction with the current collection network can significantly decrease lifetime by inducing metal migration and segregation and by accelerating the sintering rate.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: In: IECEC '92; Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 3-7, 1992. Vol. 3 (A93-25851 09-44); p. 3.7-3.12.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The Alkali Metal Thermal to Electric Converter (AMTEC) is a static energy conversion technology that is expected to provide low mass thermal to electric conversion with efficiencies between 20 and 35 percent. The U.S. program to develop this technology for space power applications has grown substantially over the past 3 years. This expanding program has brought together several laboratories and technical consultants, in separately sponsored projects, to develop the key elements of the technology. An assessment of this multiparty program indicates that, in general, the effort has focused on the high priority technical elements with only moderate overlap between individual projects. There are, however, several areas where additional coordination is needed between major participants in the existing projects, and other areas where new projects should be started, in order to provide reliable space power systems without unnecessary delays.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: In: IECEC '92; Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 3-7, 1992. Vol. 3 (A93-25851 09-44); p. 3.215-3.220.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The exchange current, transfer coefficient, mass-transport parameters, and electrode capacitance at the Na(g)/porous Mo/Na-Beta-double prime alumina solid electrolyte (BASE) phase boundary have been evaluated from 740 to 1220 K. The transfer coefficient exhibits a value close to 0.5 and the exchange current is dominated by collision frequency, with no significant activation energy. Since the porous Mp-electrode adopts a fairly regular microstructure on the BASE surface, the magnitude of the exchange current of mature electrodes directly depends on the actual contact zone of the porous metal film with the BASE ceramic, and decreases slightly as grain growth occurs. The exchange currents and the mass-transport parameters derived for very porous, thin Mo electrodes indicate that the charge-transfer reaction occurs at a small fraction of the interface. High-frequency limiting capacitance and resistance values due to the interface show potential dependence and a value on the order of 1 F/sq m and 0.1-1.0 Ohm-sq cm.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Electrochemical Society, Journal (ISSN 0013-4651); 137; 1716-172
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: Mixed mass-transport and kinetic control of sodium ion reduction at porous inert electrodes on sodium beta-double-prime alumina solid electrolyte (BASE) ceramic in a high-temperature electrochemical cell has been observed and modeled. The high ionic conductivity of BASE and the reversibility of the liquid sodium/BASE anodic half-cell led to assignment of potential-dependent (nonohmic) resistances to kinetic and mass-transport processes associated with the porous electrode. The morphology of these electrodes and typical sodium gas pressures are consistent with Knudsen, or free-molecular, flow through the electrode.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: Electrochemical Society, Journal (ISSN 0013-4651); 137; 1709-171
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: The properties of the alkali metal thermoelectric converter (AMTEC) are discussed together with those of an efficient AMTEC electrode. Three groups of electrodes were prepared and tested for their performance as AMTEC electrodes, including WPt-T3, WRh-B1, and WRh-B2. The best electrodes of both WPt and WRh types typically exhibited low porosity, and thickness greater than 0.8 micron, which indicated that transport in these electrodes does not occur by a purely free-molecular flow mode. The observed values of the exchange current were found to be within the range of those observed for oxide-free Mo electrodes under similar conditions.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: Electrochemical Society, Journal (ISSN 0013-4651); 136; 893
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Description: Alkali metal thermal to electric converter (AMTEC) designs for space power are numerous, but selection of materials for construction of long-lived AMTEC devices has been limited to electrodes, current collectors, and the solid electrolyte. AMTEC devices with lifetimes greater than 5 years require careful selection and life testing of all hot-side components. The likely selection of a remote condensed design for initial flight test and probable use with a GPHS in AMTEC powered outer planet probes requires the device to be constructed to tolerate T greater than 1150K, as well as exposure to Na(sub (g)), and Na(sub (liq)) on the high pressure side. The temperatures involved make critical high strength and chemical resistance to Na containing Na(sub 2)O. Selection among materials which can be worked should not be driven by ease of fabricability, as high temperature stability is the critical issue. These concepts drive the selection of Mo alloys for Na(sub (liq)) containment in AMTEC cells for T to 1150K operation, as they are significantly stronger than comparable NB or Ta alloys, are less soluble in Na(sub (liq)) containing dissolved Na(sub 2)O, are workable compared to W alloys (which might be used for certain components), and are ductile at the T greater than 500K of proposed AMTEC modules in space applications.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Description: Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-08
    Description: The preparation of dense potassium beta.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-08
    Description: The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...