ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 10 (2004), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Although bioclimatic modelling is often used to estimate potential impacts of likely climate changes, little has been done to assess the reliability and variability of projections. Here, using four niche-based models, two methods to derive probability values from models into presence–absence data and five climate change scenarios, I project the future potential habitats of 1350 European plant species for 2050. All 40 different projections of species turnover across Europe suggested high potential species turnover (up to 70%) in response to climate change. However variability in the potential distributional changes of species across climate scenarios was obscured by a strong variability in projections arising from alternative, yet equally justifiable, niche-based models. Therefore, projections of future species distributions and derived community descriptors cannot be reliably discussed unless model uncertainty is quantified explicitly. I propose and test an alternative way to account for modelling variability when deriving estimates of species turnover (with and without dispersal) according to a range of climate change scenarios representing various socio-economic futures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Using spatial predictions of future threats to biodiversity, we assessed for the first time the relative potential impacts of future land use and climate change on the threat status of plant species. We thus estimated how many taxa could be affected by future threats that are usually not included in current IUCN Red List assessments. Here, we computed the Red List status including future threats of 227 Proteaceae taxa endemic to the Cape Floristic Region, South Africa, and compared this with their Red List status excluding future threats. We developed eight different land use and climate change scenarios for the year 2020, providing a range of best- to worst-case scenarios. Four scenarios include only the effects of future land use change, while the other four also include the impacts of projected anthropogenic climate change (HadCM2 IS92a GGa), using niche-based models. Up to a third of the 227 Proteaceae taxa are uplisted (become more threatened) by up to three threat categories if future threats as predicted for 2020 are included, and the proportion of threatened Proteaceae taxa rises on average by 9% (range 2–16%), depending on the scenario. With increasing severity of the scenarios, the proportion of Critically Endangered taxa increases from about 1% to 7% and almost 2% of the 227 Proteaceae taxa become Extinct because of climate change. Overall, climate change has the most severe effects on the Proteaceae, but land use change also severely affects some taxa. Most of the threatened taxa occur in low-lying coastal areas, but the proportion of threatened taxa changes considerably in inland mountain areas if future threats are included. Our approach gives important insights into how, where and when future threats could affect species persistence and can in a sense be seen as a test of the value of planned interventions for conservation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 11 (2005), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Increasing concern over the implications of climate change for biodiversity has led to the use of species–climate envelope models to project species extinction risk under climate-change scenarios. However, recent studies have demonstrated significant variability in model predictions and there remains a pressing need to validate models and to reduce uncertainties. Model validation is problematic as predictions are made for events that have not yet occurred. Resubstituition and data partitioning of present-day data sets are, therefore, commonly used to test the predictive performance of models. However, these approaches suffer from the problems of spatial and temporal autocorrelation in the calibration and validation sets. Using observed distribution shifts among 116 British breeding-bird species over the past ∼20 years, we are able to provide a first independent validation of four envelope modelling techniques under climate change. Results showed good to fair predictive performance on independent validation, although rules used to assess model performance are difficult to interpret in a decision-planning context. We also showed that measures of performance on nonindependent data provided optimistic estimates of models' predictive ability on independent data. Artificial neural networks and generalized additive models provided generally more accurate predictions of species range shifts than generalized linear models or classification tree analysis. Data for independent model validation and replication of this study are rare and we argue that perfect validation may not in fact be conceptually possible. We also note that usefulness of models is contingent on both the questions being asked and the techniques used. Implementations of species–climate envelope models for testing hypotheses and predicting future events may prove wrong, while being potentially useful if put into appropriate context.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Concern for climate change has not yet been integrated in protocols for reserve selection. However if climate changes as projected, there is a possibility that current reserve-selection methods might provide solutions that are inadequate to ensure species' long-term persistence within reserves. We assessed, for the first time, the ability of existing reserve-selection methods to secure species in a climate-change context. Six methods using a different combination of criteria (representation, suitability and reserve clustering) are compared. The assessment is carried out using European distributions of 1200 plant species and considering two extreme scenarios of response to climate change: no dispersal and universal dispersal. With our data, 6–11% of species modelled would be potentially lost from selected reserves in a 50-year period. Measured uncertainties varied in 6% being 1–3% attributed to dispersal assumptions and 2–5% to the choice of reserve-selection method. Suitability approaches to reserve selection performed best, while reserve clustering performed poorly. We also found that 5% of species modelled would lose their entire climatic envelope in the studied area; 2% of the species modelled would have nonoverlapping distributions; 93% of the species modelled would maintain varying levels of overlapping distributions. We conclude there are opportunities to minimize species' extinctions within reserves but new approaches are needed to account for impacts of climate change on species; especially for those projected to have temporally nonoverlapping distributions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: Predicting the probability of successful establishment of plant species by matching climatic variables has considerable potential for incorporation in early warning systems for the management of biological invasions. We select South Africa as a model source area of invasions worldwide because it is an important exporter of plant species to other parts of the world because of the huge international demand for indigenous flora from this biodiversity hotspot. We first mapped the five ecoregions that occur both in South Africa and other parts of the world, but the very coarse definition of the ecoregions led to unreliable results in terms of predicting invasible areas. We then determined the bioclimatic features of South Africa's major terrestrial biomes and projected the potential distribution of analogous areas throughout the world. This approach is much more powerful, but depends strongly on how particular biomes are defined in donor countries. Finally, we developed bioclimatic niche models for 96 plant taxa (species and subspecies) endemic to South Africa and invasive elsewhere, and projected these globally after successfully evaluating model projections specifically for three well-known invasive species (Carpobrotus edulis, Senecio glastifolius, Vellereophyton dealbatum) in different target areas. Cumulative probabilities of climatic suitability show that high-risk regions are spatially limited globally but that these closely match hotspots of plant biodiversity. These probabilities are significantly correlated with the number of recorded invasive species from South Africa in natural areas, emphasizing the pivotal role of climate in defining invasion potential. Accounting for potential transfer vectors (trade and tourism) significantly adds to the explanatory power of climate suitability as an index of invasibility.The close match that we found between the climatic component of the ecological habitat suitability and the current pattern of occurrence of South Africa alien species in other parts of the world is encouraging. If species' distribution data in the donor country are available, climatic niche modelling offers a powerful tool for efficient and unbiased first-step screening. Given that eradication of an established invasive species is extremely difficult and expensive, areas identified as potential new sites should be monitored and quarantine measures should be adopted.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Global change biology 9 (2003), S. 0 
    ISSN: 1365-2486
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Notes: A new computation framework (BIOMOD: BIOdiversity MODelling) is presented, which aims to maximize the predictive accuracy of current species distributions and the reliability of future potential distributions using different types of statistical modelling methods. BIOMOD capitalizes on the different techniques used in static modelling to provide spatial predictions. It computes, for each species and in the same package, the four most widely used modelling techniques in species predictions, namely Generalized Linear Models (GLM), Generalized Additive Models (GAM), Classification and Regression Tree analysis (CART) and Artificial Neural Networks (ANN). BIOMOD was applied to 61 species of trees in Europe using climatic quantities as explanatory variables of current distributions. On average, all the different modelling methods yielded very good agreement between observed and predicted distributions. However, the relative performance of different techniques was idiosyncratic across species, suggesting that the most accurate model varies between species. The results of this evaluation also highlight that slight differences between current predictions from different modelling techniques are exacerbated in future projections. Therefore, it is difficult to assess the reliability of alternative projections without validation techniques or expert opinion. It is concluded that rather than using a single modelling technique to predict the distribution of several species, it would be more reliable to use a framework assessing different models for each species and selecting the most accurate one using both evaluation methods and expert knowledge.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 448 (2007), S. 550-552 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] ...How serious is climate change compared with other factors affecting biodiversity? Very — but it tends to act over a longer timescale. The ecological disruption wrought by climate change is generally slower than that caused by other factors. Such factors include habitat destruction ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Arising from: C. D. Thomas et al. Nature 427, 145–148 (2004); see also communication from Buckley & Roughgarden and communication from Harte et al.;Thomas et al. replyThomas et al. ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-07-12
    Description: The pace of on-going climate change calls for reliable plant biodiversity scenarios. Traditional dynamic vegetation models use plant functional types that are summarized to such an extent that they become meaningless for biodiversity scenarios. Hybrid dynamic vegetation models of intermediate complexity (hybrid-DVMs) have recently been developed to address this issue. These models, at the crossroads between phenomenological and process-based models, are able to involve an intermediate number of well-chosen plant functional groups (PFGs). The challenge is to build meaningful PFGs that are representative of plant biodiversity, and consistent with the parameters and processes of hybrid-DVMs. Here, we propose and test a framework based on few selected traits to define a limited number of PFGs, which are both representative of the diversity (functional and taxonomic) of the flora in the Ecrins National Park, and adapted to hybrid-DVMs. This new classification scheme, together with recent advances in vegetation modeling, constitutes a step forward for mechanistic biodiversity modeling. © 2012 Blackwell Publishing Ltd
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-11-09
    Description: During the last decade, despite strenuous efforts to develop new models and compare different approaches, few conclusions have been drawn on their ability to provide robust biodiversity projections in an environmental change context. The recurring suggestions are that models should explicitly (i) include spatiotemporal dynamics; (ii) consider multiple species in interactions; and (iii) account for the processes shaping biodiversity distribution. This paper presents a biodiversity model (FATE-HD) that meets this challenge at regional scale by combining phenomenological and process-based approaches and using well-defined plant functional groups. FATE-HD has been tested and validated in a French National Park, demonstrating its ability to simulate vegetation dynamics, structure and diversity in response to disturbances and climate change. The analysis demonstrated the importance of considering biotic interactions, spatio-temporal dynamics, and disturbances in addition to abiotic drivers to simulate vegetation dynamics. The distribution of pioneer trees was particularly improved, as were all undergrowth functional groups. This article is protected by copyright. All rights reserved.
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...