ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-10
    Description: Freezing, dehydration, salinity variations, hypoxia or anoxia are some of the environmental constraints that many organisms must frequently endure. Organisms adapted to these stressors often reduce their metabolic rates to maximize their chances of survival. However, upon recovery of environmental conditions and basal metabolic rates, cells are affected by an oxidative burst that, if uncontrolled, leads to (oxidative) cell damage and eventually death. Thus, a number of adapted organisms are able to increase their antioxidant defenses during an environmental/functional hypoxic transgression; a strategy that was interpreted in the 1990s as a "preparation for oxidative stress" (POS). Since that time, POS mechanisms have been identified in at least 83 animal species representing different phyla including Cnidaria, Nematoda, Annelida, Tardigrada, Echinodermata, Arthropoda, Mollusca and Chordata. Coinciding with the 20th anniversary of the postulation of the POS hypothesis, we compiled this review where we analyze a selection of examples of species showing POS-mechanisms and review the most recent advances in understanding the underlying molecular mechanisms behind those strategies that allow animals to survive in harsh environments.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-05-13
    Description: The jumbo squid, Dosidicus gigas, can survive extended forays into the oxygen minimum zone (OMZ) of the Eastern Pacific Ocean. Previous studies have demonstrated reduced oxygen consumption and a limited anaerobic contribution to ATP production, suggesting the capacity for substantial metabolic suppression during hypoxic exposure. Here, we provide a more complete description of energy metabolism and explore the expression of proteins indicative of transcriptional and translational arrest that may contribute to metabolic suppression. We demonstrate a suppression of total ATP demand under hypoxic conditions (1% oxygen, PO2=0.8 kPa) in both juveniles (52%) and adults (35%) of the jumbo squid. Oxygen consumption rates are reduced to 20% under hypoxia relative to air-saturated controls. Concentrations of arginine phosphate (Arg-P) and ATP declined initially, reaching a new steady state (~30% of controls) after the first hour of hypoxic exposure. Octopine began accumulating after the first hour of hypoxic exposure, once Arg-P breakdown resulted in sufficient free arginine for substrate. Octopine reached levels near 30 mmol g−1 after 3.4 h of hypoxic exposure. Succinate did increase through hypoxia but contributed minimally to total ATP production. Glycogenolysis in mantle muscle presumably serves to maintain muscle functionality and balance energetics during hypoxia. We provide evidence that post-translational modifications on histone proteins and translation factors serve as a primary means of energy conservation and that select components of the stress response are altered in hypoxic squids. Reduced ATP consumption under hypoxia serves to maintain ATP levels, prolong fuel store use and minimize the accumulation of acidic intermediates of anaerobic ATP-generating pathways during prolonged diel forays into the OMZ. Metabolic suppression likely limits active, daytime foraging at depth in the core of the OMZ, but confers an energetic advantage over competitors that must remain in warm, oxygenated surface waters. Moreover, the capacity for metabolic suppression provides habitat flexibility as OMZs expand as a result of climate change.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Palo Alto, Calif. : Annual Reviews
    Annual Review of Ecology, Evolution, and Systematics 27 (1996), S. 365-386 
    ISSN: 0066-4162
    Source: Annual Reviews Electronic Back Volume Collection 1932-2001ff
    Topics: Biology
    Notes: Abstract Natural freeze-tolerance supports the winter survival of many animals including numerous terrestrial insects, many intertidal marine invertebrates, and selected species of terrestrially hibernating amphibians and reptiles. Freeze-tolerant animals typically endure the conversion of 50% or more of total body water into extracellular ice and employ a suite of adaptations that counter the negative consequences of freezing. Specific adaptations control the sites and rate of ice formation to prevent physical damage by ice. Other adaptations regulate cell-volume change: Colligative cryoprotectants minimize cell shrinkage during extracellular ice formation; other protectants stabilize membrane structure; and a high density of membrane transporter proteins ensure rapid cryoprotectant distribution. Cell survival during freezing is also potentiated by anoxia tolerance, mechanisms of metabolic rate depression, and antioxidant defenses. The net result of these protective mechanisms is the ability to reactivate vital functions after days or weeks of continuous freezing. Magnetic resonance imaging has allowed visual examinations of the mode of ice penetration through the body of freeze-tolerant frogs and turtles, and cryomicroscopy has illustrated the effects of freezing on the cellular and microvasculature structure of tissues. Various metabolic adaptations for freezing survival appear to have evolved out of pre-existing physiological capacities of animals, including desiccation-resistance and anoxia-tolerance.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 33 (1990), S. 48-50 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Amyloglucosidase and pullulanase were co-immobilized using a hydrophilic polyurethane foam (Hypol® 2002). The combined amyloglucosidase and pullulanase activity of the immobilized enzyme was 32.2% ± 1.7% relative to the non-immobilized enzyme. The co-immobilized enzymes were capable of using a variety of glycogen and starch substrates. Co-immobilization of amyloglucosidase and pullulanase increased the glucose yield 1.6-fold over immobilized amyloglucosidase alone. No decrease in activity was observed after 4 months storage for the co-immobilized enzymes. The results suggest that co-immobilization of amyloglucosidase and pullulanase in polyurethane foams is a potentially useful approach for commercial starch hydrolysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1430-3418
    Keywords: Anuran dormancy ; Intermediary metabolism ; Metabolic rate depression ; Protein kinase ; Protein phosphatase ; Scaphiopus couchii
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The maximal activities of 28 enzymes, representing multiple pathways of intermediary metabolism, were quantified in the brain, liver and skeletal muscle of spadefoot toads Scaphiopus couchii, comparing control toads with animals that had estivated for 2 months. Estivation-induced changes in brain enzyme activities were consistent with suppressed glycolysis and increased ketone body and amino acid catabolism. In liver, estivation resulted in reduced activities of eight enzymes representing carbohydrate, amino acid, ketone body and phosphagen metabolism, but the maximal activity of malic enzyme increased by 2.4-fold. Estivation led to a large-scale reorganization of skeletal muscle affecting most of the enzymes analyzed. Activities of enzymes of carbohydrate catabolism were generally elevated except for glycogen phosphorylase and hexokinase, whereas those of enzymes of fatty acid synthesis and ketone body metabolism were reduced. Increased glutamate dehydrogenase activities in both brain and muscle, as well as activities of other amino-acid-catabolizing enzymes in muscle, correlated with specific changes in the free amino acids pools in those tissues (reduced glutamine activity, increased glutamate, alanine and valine activities) that appear to be related to protein catabolism, for the purposes of elevating urea levels. The effects of estivation on signal transduction systems were also assessed. Total activities of protein kinases A and C (PKA and PKC) were largely unaltered in toad tissues during estivation (except for a 57% reduction in liver total PKC), but in seven organs there were strong reductions in the percentage of PKA present as the active catalytic subunit in estivating animals, and three contained a much lower percentage of membrane-bound active PKC during estivation. Activities of protein phosphatase types 1, 2A, 2B, and 2C were also frequently reduced during estivation. Overall, these results suggest that anuran estivation involves metabolic reorganization, including changing the maximal activities of key enzymes of intermediary metabolism as well as depressing the metabolic rate by suppressing signal transducing enzymes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1430-3418
    Keywords: Adipose ; ATP citrate lyase (ACL) ; Cynomys ; Glucose-6-phosphate dehydrogenase (G6PDH) ; Hibernation ; Hormone-sensitive lipase (HSL) ; Liver ; Malic enzyme (ME)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract White-tailed prairie dogs (Cynomys leucurus) are spontaneous hibernators that enter torpor each fall, whereas black-tailed prairie dogs (C. ludovicianus) hibernate facultatively only when food- or water-stressed during the winter. The body masses of both species greatly increase during the fall feeding period, with most of this gain in the form of depot fat. Body fat is utilized during winter fasting and/or hibernation. We measured the activities of fatty acid synthase (FAS), ATP-citrate lyase (ACL), malic enzyme (ME), glucose-6-phosphate dehydrogenase (G6PDH), and hormone-sensitive lipase (HSL) in the tissues of both C.leucurus (hibernating and euthermic) and C. ludovicianus (euthermic only) under controlled conditions. The activities of FAS, ACL, and G6PDH in the liver all decreased during hibernation. The activities of ME and G6PDH in white adipose tissue (WAT) were also reduced during hibernation. Euthermic C. leucurus and euthermic C. ludovicianus differed only in brown adipose (BAT) ACL and WAT G6PDH activities. No significant differences in HSL activities were found between these two species or between euthermic and hibernating animals. These results suggest that this seasonal body fat cycle is due, at least in part, to seasonal variations in the activities of FAS, ME, ACL, and G6PDH that affect the rate of fatty acid synthesis. This study also demonstrates that spontaneous hibernators do not have a greater capacity to synthesize fatty acids during the fall than facultative hibernators, as previously suggested.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 122 (1993), S. 1-7 
    ISSN: 1573-4919
    Keywords: enzyme binding ; glycolytic enzyme complex ; inhibition of glycolysis ; metabolism ; enzyme regulation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The effect of changing concentrations of glycolytic intermediates on the binding of phosphofructokinase, aldolase and pyruvate kinase to cellular particulate matter was investigated. Concentrations of glycolytic intermediates were altered by adding 2mM iodoacetic acid (IAA) to an incubation medium containing tissues isolated from the channelled whelkBusycon canaliculatum. Iodoacetic acid inhibited glyceraldehyde 3-phosphate dehydrogenase activity causing a 100–400 fold increase in the concentration of fructose 1,6-bisphosphate as well as 3–20 fold increases in glucose 6-phosphate, fructose 6-phosphate, and dihydroxyacetone phosphate levels depending on the experimental protocol. Cellular pH values were not statistically different in the presence of IAA. Measurement of enzyme binding to particulate matter showed that the binding of phosphofructokinase, aldolase and pyruvate kinase was unaffected by iodoacetic acid under any experimental conditon. These results show that changes in the tissue concentrations of enzyme substrates and products do not regulate enzyme binding to particulate matter in the cell. (Mol Cell Biochem122: 1–7, 1993)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 131 (1994), S. 9-17 
    ISSN: 1573-4919
    Keywords: Scaphiopus couchii ; Rana pipiens ; estivation ; pyruvate kinase ; phosphofructokinase ; urea effects on enzymes ; metabolic arrest
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract The effects of urea, cations (K+, NH4, Na+, Cs+, Li+), and trimethylamines on the maximal activities and kinetic properties of pyruvate kinase (PK) and phosphofructokinase (PFK) from skeletal muscle, were analyzed in two anuran amphibians, an estivating species, the spadefoot toadScaphiopus couchii, and a semi-aquatic species, the leopard frogRana pipiens. Urea, which accumulates naturally to levels of 200–300 mM during estivation in toads, had only minor effects on the Vmax, kinetic constants and pH curves of PK from either species and no effects on PFK Vmax or kinetic constants. Trimethylamine oxide neither affected enzyme activity directly or changed enzyme response to urea. By contrast, high KCl (200 mM) lowered the Vmax of toad PFK and of PK from both species and altered the Km values for both substrates of frog PFK. Other cations were even more inhibitory; for example, the Vmax of PK from either species was reduced by more than 80% by the addition of 200 mM NH4Cl, NaCl, CsCi, or LiCl. High KCl also significantly changed the Km values for substrates of toad lactate dehydrogenase and strongly reduced the Vmax of glutamate dehydrogenase and NAD-dependent isocitrate dehydrogenase in both species whereas 300 mM urea had relatively little effect on these enzymes. The perturbing effect of urea on enzymes and the counteracting effect of trimethylamines that has been reported for elasmobranch fishes (that maintain high concentrations of both solutes naturally) does not appear to apply to amphibian enzymes. Rather, we found that urea is largely a non-perturbing solute for anuran enzymes (I50 values were〉1 M for both PK and PFK in both species) and we propose that its accumulation in high concentrations during estivation helps to minimize the increase in cellular ionic strength that would otherwise occur during desiccation and to alleviate the accompanying negative effects of high salt on individual enzyme activities and overall metabolic regulation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Molecular and cellular biochemistry 143 (1995), S. 7-13 
    ISSN: 1573-4919
    Keywords: aestivation ; protein phosphorylation ; subcellular fractionation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Protein phosphorylation patterns were investigated in whole tissues and subcellular fractions of active and aestivatingOtala lactea (Müller) (Pulmonata, Helicidae). Measurement of overall protein phosphorylation showed that incorporation of32P increased until the second day after injection and remained constant for the remaining 4 days of the time course. Comparison of tissues from aestivating and active snails on day 3 showed a decreased protein phosphorylation in aestivating snails (44% of active). No differences in total and protein-associated radioactivity for foot, mantle or haemolymph were observed. Subcellular fractionation of the hepatopancreas localized the changes to plasma membrane, microsomal, and cytosolic fractions: values for aestivating animals were reduced to 71, 37 and 58% of the corresponding active values. Separation of the individual subcellular fractions on isoelectric focusing columns revealed differences in the phosphate incorporation patterns. Plasma membrane from aestivating animal hepatopancreas had a lower overall level of incorporation and fewer radioactive peaks in the pH 7–10 region than did the plasma membrane fraction from active animals. SDS-PAGE analysis of plasma membrane fractions from active and aestivating snails showed a relative decrease in phosphorylation between 60–80 kDa and 30–40 kDa. IEF analysis of cytosolic proteins from aestivating snail hepatopancreas also showed peaks of radioactivity that were apparently shifted by 0.3 pH units toward higher pI values. Increased phosphate incorporation was observed at a peak that corresponded to the pI value for pyruvate kinase in aestivating snails but definite assignment of peaks was not possible. SDS-PAGE analysis of cytosolic proteins showed an aestivation-related decrease in relative protein phosphorylation between 30–35 kDa and 40–45 kDa. A relative increase in phosphorylation during aestivation was observed for proteins between 16–22 kDa. Overall, the data indicate that snails dramatically alter their protein phosphorylation pattern in hepatopancreas during aestivation. (Mol Cell Biochem143: 7–13, 1995)
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-4919
    Keywords: metabolic rate depression ; anuran metabolism ; dormancy ; glycolytic control
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Abstract Both pyruvate kinase (PK) and phosphofructokinase (PFK) occur in two different forms, separable by isoelectric focusing (IEF), in skeletal muscle of the spadefoot toad Scaphiopus couchii. During estivation (aerobic dormancy) the proportions of the two forms changed compared with controls; in both cases the amount of enzyme in Peak I (pI = 5.3-5.4) decreased whereas activity in Peak II (isoelectric point = 6.2-6.4) increased. In vitro incubation of crude muscle extracts with 32P-ATP under conditions that promoted the activity of cAMP-dependent protein kinase led to strong radiolabeling associated with Peak I, but not Peak II, and reverse phase HPLC confirmed that 32P was associated with the subunits of both PK and PFK found in Peak I. Specific radiolabeling of Peak I PK and PFK by protein kinase A was further confirmed using immunoprecipitation. In total, this information allowed identification of the Peaks I and II enzymes as the phosphorylated and dephosphorylated forms, respectively, and the effect of estivation was to increase the proportion of dephosphorylated PK and PFK in muscle. Analysis of the kinetic properties of partially purified PK and PFK revealed significant kinetic differences between the two forms of each enzyme. For PK, the Peak II (low phosphate) enzyme showed a 1.6-fold higher Km for phosphoenolpyruvate and a 2.4-fold higher Ka for fructose-1,6-bisphosphate than did the Peak I (high phosphate) form. These kinetic properties suggest that Peak II PK is the less active form, and coupled with the shift to predominantly the Peak II form during estivation (87% Peak II vs. 13% Peak I), are consistent with a suppression of PK activity in estivating muscle, as part of the overall metabolic rate depression of the estivating state. A similar shift to predominantly the Peak II, low phosphate, form of PFK (75% Peak II, 25% Peak I) in muscle of estivating animals is also consistent with metabolic suppression since phosphorylation of vertebrate skeletal muscle PFK is typically stimulated during exercise to enhance enzyme binding to myofibrils in active muscle. Peak II PFK also showed reduced sensitivity to inhibition by Mg:ATP (I50 50% higher) compared with the Peak I form suggesting that the enzyme in estivating muscle is less tightly regulated by cellular adenylate status than in awake toads. The data indicate that reversible phosphorylation control over the activity states of enzymes of intermediary metabolism is an important mechanism for regulating transitions between dormant and active states in estivating species.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...