ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-12-31
    Description: Sunflower residues are considered a prominent renewable source for biogas production during anaerobic digestion (AD). However; the recalcitrant structure of this lignocellulosic substrate requires a pretreatment step for efficient biomass transformation and increased bioenergy output. The aim of the present study was to assess the effect of alkaline pretreatment of various parts of the sunflower residues (e.g., heads and stalks) on their methane yield. Experimental data showed that pretreatment at mild conditions (55 °C; 24 h; 4 g NaOH 100 g−1 total solids) caused an increase in the biochemical methane potential (BMP) of both heads and stalks of the sunflower residues as determined in batch tests. The highest methane production (268.35 ± 0.11 mL CH4 g−1 volatile solids) was achieved from the pretreated sunflower head residues. Thereafter; the effect of alkaline pretreatment of sunflower head residues was assessed in continuous mode; using continuous stirred-tank reactors (CSTRs) under two operational phases. During the first phase; the CSTRs were fed with the liquid fraction produced from the pretreatment of sunflower heads. During the second phase; the CSTRs were fed with the whole slurry resulting from the pretreatment of sunflower heads (i.e., both liquid and solid fractions). In both operating phases; it was observed that the alkaline pretreatment of the sunflower head residues had a negligible (phase I) or even a negative effect on biogas production; which was contradictory to the results of the BMP tests. It seems that; during alkaline pretreatment; this part of the sunflower residues (heads) may release inhibitory compounds; which induce a negative effect on biogas production in the long term (e.g., during continuously run digesters such as CSTR) but not in the short-term (e.g., batch tests) where the effect of the inoculum may not permit the inhibition to be established.
    Electronic ISSN: 1420-3049
    Topics: Chemistry and Pharmacology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-11-02
    Description: Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).
    Electronic ISSN: 2073-4441
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...