ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-10-05
    Description: Prediction of stable mineral equilibria in the Earth's lithosphere is critical to unravel the tectonomagmatic history of exposed geological sections. While the recent advances in geodynamic modeling allow us to explore the dynamics of magmatic transfer in solid mediums, there is to date no available thermodynamic package that can easily be linked and efficiently be accounted for the computation of phase equilibrium in magmatic systems. Moreover, none of the existing tools fully exploit single point calculation parallelization, which strongly hinders their applicability for direct geodynamic coupling or for thermodynamic database inversions. Here, we present a new Mineral Assemblage Gibbs Energy Minimizer (magemin). The package is written as a parallel C library, provides a direct Julia interface, and is callable from any petrological/geodynamic tool. For a given set of pressure, temperature, and bulk‐rock composition magemin uses a combination of linear programming, extended Partitioning Gibbs Energy and gradient‐based local minimization to compute the stable mineral assemblage. We apply our new minimization package to the igneous thermodynamic data set of Holland et al. (2018), https://doi.org/10.1093/petrology/egy048 and produce several phase diagrams at supra‐solidus conditions. The phase diagrams are then directly benchmarked against thermocalc and exhibit very good agreement. The high scalability of magemin on parallel computing facilities opens new horizons, for example, for modeling reactive magma flow, for thermodynamic data set inversion, and for petrological/geophysical applications.
    Description: Plain Language Summary: Understanding magmatic systems requires knowing how rocks melt. Because a single melting experiment can easily take weeks, it is impossible to do enough experiments to cover the whole range of pressure, temperature, and composition relevant for magmatic systems. We therefore need a way to interpolate in between conditions that are not directly covered by the experiments. It is long known that the best way to perform such interpolation is by using basic thermodynamic principles. For magmatic systems, this requires a well‐calibrated thermodynamic melting model. It also requires an efficient computational tool to predict the most stable configuration of minerals and melt. Since the 1980s, a number of such computational tools have been developed to perform a so‐called Gibbs energy minimization. These tools work very well for simpler systems but become very slow for recently developed, more realistic, melting models. Here, we describe a new method that combines some ideas of the previous methods with a new algorithm. Our method is faster and takes advantage of modern computer architectures. It can predict rock properties such as densities, seismic velocities, melt content, and chemistry. It can therefore be used to link physical observations with hard rock data of magmatic systems.
    Description: Key Points: A new, parallel, Gibbs energy minimization approach is presented to compute multiphase multicomponent equilibria. It predicts parameters like stable phases, melt content, or seismic velocities as a function of chemistry and temperature/pressure conditions. Examples and benchmark cases are presented that apply the approach to magmatic systems.
    Description: EC | H2020 | H2020 Priority Excellent Science | H2020 European Research Council (ERC) http://dx.doi.org/10.13039/100010663
    Description: https://doi.org/10.5281/zenodo.6347567
    Description: https://github.com/ComputationalThermodynamics/magemin.git
    Keywords: ddc:552
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Biological cybernetics 32 (1979), S. 201-209 
    ISSN: 1432-0770
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Computer Science , Physics
    Notes: Abstract A model of the hind limb of the terrapin, devoid of sensory feedback, but which is capable of producing realistic reflex movements is presented. It is shown that very small adjustments of the activation pattern of the muscles (the input of the model) are sufficient to correct the movement for different starting positions or to different targets. Mechanical disturbances of the movement can also be simulated. Comparisons with experimental tests with the same sorts of disturbance were done to try and determine if the real system possesses feedback which tries to adjust to the disturbance. Since the simulations of disturbed movements predict fairly well the experimental movements we are drawn to the conclusion that the movement takes place by means of a pattern generator and no compensation against disturbances is present.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2010-08-03
    Print ISSN: 0031-9155
    Electronic ISSN: 1361-6560
    Topics: Biology , Medicine , Physics
    Published by Institute of Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2015-12-24
    Description: The El Oro complex, southwestern Ecuador, is a tilted section of the metasedimentary Ecuadorian forearc, which was partially molten during Triassic time due to gabbroic magma emplacement. Pressure and maximum temperature estimates show that the metamorphic gradient during anatexis was 45 °C/km in the upper crust and 10 °C/km in the 7–8 km garnet-bearing migmatitic lower crust, controlled by biotite-breakdown melting reactions. Our petrological and geochemical studies indicate that melts produced during biotite-breakdown (5–15 vol%) were trapped and pervasively distributed in the garnet-bearing migmatite. Based on these results we carried out one-dimensional thermal modeling to characterize the heat transfer processes that led to the establishment of such a low thermal gradient during partial melting. Our results show that neither diffusive nor upward melt transfer models account for the low metamorphic gradient in the garnet-bearing migmatite. We demonstrate that in the El Oro complex, convection of the garnet-bearing migmatitic layer is the most likely heat transfer process that explains all the petrological, geochemical, and metamorphic data.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2012-04-08
    Description: Motivation: To further our understanding of the mechanisms underlying biochemical pathways mathematical modelling is used. Since many parameter values are unknown they need to be estimated using experimental observations. The complexity of models necessary to describe biological pathways in combination with the limited amount of quantitative data results in large parameter uncertainty which propagates into model predictions. Therefore prediction uncertainty analysis is an important topic that needs to be addressed in Systems Biology modelling. Results: We propose a strategy for model prediction uncertainty analysis by integrating profile likelihood analysis with Bayesian estimation. Our method is illustrated with an application to a model of the JAK-STAT signalling pathway. The analysis identified predictions on unobserved variables that could be made with a high level of confidence, despite that some parameters were non-identifiable. Availability and implementation: Source code is available at: http://bmi.bmt.tue.nl/sysbio/software/pua.html . Contact: j.vanlier@tue.nl Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2012-04-08
    Description: Motivation: Systems biology employs mathematical modelling to further our understanding of biochemical pathways. Since the amount of experimental data on which the models are parameterized is often limited, these models exhibit large uncertainty in both parameters and predictions. Statistical methods can be used to select experiments that will reduce such uncertainty in an optimal manner. However, existing methods for optimal experiment design (OED) rely on assumptions that are inappropriate when data are scarce considering model complexity. Results: We have developed a novel method to perform OED for models that cope with large parameter uncertainty. We employ a Bayesian approach involving importance sampling of the posterior predictive distribution to predict the efficacy of a new measurement at reducing the uncertainty of a selected prediction. We demonstrate the method by applying it to a case where we show that specific combinations of experiments result in more precise predictions. Availability and implementation: Source code is available at: http://bmi.bmt.tue.nl/sysbio/software/pua.html Contact: j.vanlier@tue.nl ; N.A.W.v.Riel@tue.nl Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: 〈p〉The magmatic processes occurring in the lowermost arc crust play a major role in the evolution of mantle-wedge-derived melt. Geological evidence indicates that mantle-derived magmas and 〈i〉in-situ〈/i〉 products of lower crust partial melting are reacting in a pervasive melt system and are eventually extracted towards higher levels of the crust. Resolving the relative contribution of mantle-derived magma and partial melting products of pre-existing crust is essential to: (1) quantify crustal growth rate; (2) better understand the compositional range of arc magmatic series; and (3) constrain the chemical differentiation of the lower crust. In this study, we present STyx, a new modelling tool, coupling melt and heat flow with petrology to explore the dynamics of storage, transfer and hybridization of melts in complex liquid/rock systems. We perform three models representing a magmatic event affecting an amphibolitic lower arc crust in order to quantify the relative contribution between partial melting of the pre-existing crust and fractional crystallization from mantle-derived hydrous-magma. Our models demonstrate that most of the differentiated arc crust is juvenile, deriving from the differentiation of mantle melts, and that pre-existing crust does not significantly contribute to the total thickness of magmatic products.〈/p〉 〈p〉〈b〉Supplementary material:〈/b〉 Error estimates between experimental data and modelled compositions of melt and stable phases, together with the composition of segregated melt are available at 〈a href="https://doi.org/10.6084/m9.figshare.c.4064747"〉https://doi.org/10.6084/m9.figshare.c.4064747〈/a〉〈/p〉
    Print ISSN: 0375-6440
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-04-18
    Description: The magmatic processes occurring in the lowermost arc crust play a major role in the evolution of mantle-wedge-derived melt. Geological evidence indicates that mantle-derived magmas and in-situ products of lower crust partial melting are reacting in a pervasive melt system and are eventually extracted towards higher levels of the crust. Resolving the relative contribution of mantle-derived magma and partial melting products of pre-existing crust is essential to: (1) quantify crustal growth rate; (2) better understand the compositional range of arc magmatic series; and (3) constrain the chemical differentiation of the lower crust. In this study, we present STyx, a new modelling tool, coupling melt and heat flow with petrology to explore the dynamics of storage, transfer and hybridization of melts in complex liquid/rock systems. We perform three models representing a magmatic event affecting an amphibolitic lower arc crust in order to quantify the relative contribution between partial melting of the pre-existing crust and fractional crystallization from mantle-derived hydrous-magma. Our models demonstrate that most of the differentiated arc crust is juvenile, deriving from the differentiation of mantle melts, and that pre-existing crust does not significantly contribute to the total thickness of magmatic products. Supplementary material: Error estimates between experimental data and modelled compositions of melt and stable phases, together with the composition of segregated melt are available at https://doi.org/10.6084/m9.figshare.c.4064747
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-01-30
    Description: The Stak massif, northern Pakistan, is a newly recognized occurrence of eclogite formed by the subduction of the northern margin of the Indian continent in the northwest Himalaya. Although this unit was extensively retrogressed during the Himalayan collision, records of the high-pressure (HP) event as well as a continuous pressure-temperature ( P - T ) path were assessed from a single thin section using a new multiequilibrium method. This method uses microprobe X-ray compositional maps of garnet and omphacitic pyroxene followed by calculations of ~200,000 P - T estimates using appropriate thermobarometers. The Stak eclogite underwent prograde metamorphism, increasing from 650 °C and 2.4 GPa to the peak conditions of 750 °C and 2.5 GPa, then retrogressed to 700–650 °C and 1.6–0.9 GPa under amphibolite-facies conditions. The estimated peak metamorphic conditions and P - T path are similar to those of the Kaghan and Tso Morari high- to ultrahigh-pressure (HP-UHP) massifs. We propose that these three massifs define a large HP to UHP province in the northwest Himalaya, comparable to the Dabie-Sulu province in China and the Western Gneiss Region in Norway.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1979-12-01
    Print ISSN: 0340-1200
    Electronic ISSN: 1432-0770
    Topics: Biology , Computer Science , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...