ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2015-04-08
    Description: Molecular dynamic simulations on the liquid copper and tungsten are used to investigate the empirical entropy-scaling laws D * = A   exp ( B S e x ) , proposed independently by Rosenfeld and Dzugutov for diffusion coefficient, under high pressure conditions. We show that the scaling laws hold rather well for them under high pressure conditions. Furthermore, both the original diffusion coefficients and the reduced diffusion coefficients exhibit an Arrhenius relationship D M = D M 0   exp ( − E M / K B T ) , ( M = u n , R , D ) and the activation energy E M increases with increasing pressure, the diffusion pre-exponential factors ( D R 0 and D D 0 ) are nearly independent of the pressure and element. The pair correlation entropy, S 2 , depends linearly on the reciprocal temperature S 2 = − E S / T , and the activation energy, E S , increases with increasing pressure. In particular, the ratios of the activation energies ( E un , E R , and E D ) obtained from diffusion coefficients to the activation energy, E S , obtained from the entropy keep constants in the whole pressure range. Therefore, the entropy-scaling laws for the diffusion coefficients and the Arrhenius law are linked via the temperature dependence of entropy.
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...