ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Transport of alkali, metal atoms through porous cathodes of alkali metal thermal-to-electric converter (AMTEC) cells is responsible for significant reducible losses in the electrical performance of these cells. Experimental evidence for activated transport of metal atoms at grain surfaces and boundaries within some AMTEC electrodes has been derived from temperature dependent studies as well as from analysis of the detailed frequency dependence of ac impedance results for other electrodes, including thin, mature molybdenum electrodes which exhibit transport dominated by free molecular flow of sodium gas at low frequencies or dc conditions. Activated surface transport will almost always exist in parallel with free molecular flow transport, and the process of alkali atom adsorption/desorption from the electrode surface will invariably be part of the transport process, and possibly a dominant part in some cases. The temperature dependence of the diffusion coefficient of the alkali metal through the electrode in several cases provides an activation energy and preexponential, but at least two activated processes may be operative, and the activation parameters should be expected to depend on the alkali metal activity gradient that the electrode experiences. In the case of Pt/W/Mn electrodes operated for 2500 hours, limiting currents varied with electrode thickness, and the activation parameters could be assigned primarily to the surface/grain boundary diffusion process.
    Keywords: INORGANIC AND PHYSICAL CHEMISTRY
    Type: In: IECEC '92; Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 3-7, 1992. Vol. 3 (A93-25851 09-44); p. 3.19-3.24.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Electrode materials for the Alkali Metal Thermal to Electric Converter (AMTEC) play a significant role in the efficiency of the device. RhW and PtW alloys have been studied to determine the best performing material. While RhW electrodes typically have power densities somewhat lower than PtW electrodes, PtW performance is strongly influenced by the Pt/W ratio. The best performing Pt/W ratio is about 3.4. RhW electrodes sinter more slowly than PtW and are predicted to have operating lifetimes up to 40 years; PtW electrodes are predicted to have lifetimes up to 7 years. Interaction with the current collection network can significantly decrease lifetime by inducing metal migration and segregation and by accelerating the sintering rate.
    Keywords: ENERGY PRODUCTION AND CONVERSION
    Type: In: IECEC '92; Proceedings of the 27th Intersociety Energy Conversion Engineering Conference, San Diego, CA, Aug. 3-7, 1992. Vol. 3 (A93-25851 09-44); p. 3.7-3.12.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-08
    Description: Alkali metal thermal to electric converter (AMTEC) designs for space power are numerous, but selection of materials for construction of long-lived AMTEC devices has been limited to electrodes, current collectors, and the solid electrolyte. AMTEC devices with lifetimes greater than 5 years require careful selection and life testing of all hot-side components. The likely selection of a remote condensed design for initial flight test and probable use with a GPHS in AMTEC powered outer planet probes requires the device to be constructed to tolerate T greater than 1150K, as well as exposure to Na(sub (g)), and Na(sub (liq)) on the high pressure side. The temperatures involved make critical high strength and chemical resistance to Na containing Na(sub 2)O. Selection among materials which can be worked should not be driven by ease of fabricability, as high temperature stability is the critical issue. These concepts drive the selection of Mo alloys for Na(sub (liq)) containment in AMTEC cells for T to 1150K operation, as they are significantly stronger than comparable NB or Ta alloys, are less soluble in Na(sub (liq)) containing dissolved Na(sub 2)O, are workable compared to W alloys (which might be used for certain components), and are ductile at the T greater than 500K of proposed AMTEC modules in space applications.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-08
    Description: Previous work reported from JPL has included characterization of electrode kinetics and alkali atom transport from electrodes including Mo, W, WRh(sub x), WPt(sub x)(Mn), in sodium AMTEC cells and vapor exposure cells, and Mo in potassium vapor exposure cells. These studies were generally performed in cells with small area electrodes (about 1 to 5 cm(sup 2)), and device geometry had little effect on transport. Alkali diffusion coefficients through these electrodes have been characterized, and approximate surface diffusion coefficients derived in cases of activated transport. A basic model of electrode kinetic at the alkali metal vapor/porous metal electrode/alkali beta'-alumina solid electrolyte three phase boundary has been proposed which accounts for electrochemical reaction rates with a collision frequency near the three phase boundary and tunneling from the porous electrode partially covered with adsorbed alkali metal atoms. The small electrode effect in AMTEC cells has been discussed in several papers, but quantitative investigations have described only the overall effect and the important contribution of electrolyte resistance. The quantitative characterization of transport losses in cells with large area electrodes has been limited to simulations of large area electrode effects, or characterization of transport losses from large area electrodes with significant longitudinal temperature gradients. This paper describes new investigations of electrochemical kinetics and transport, particularily with WPt(sub 3.5) electrodes, including the influence of electrode size on the mass transport loss in the AMTEC cell. These electrodes possess excellent sodium transport properties making verification of device limitations on transport much more readily attained.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-08
    Description: The lifetime of an AMTEC electrode depends on the rate of grain growth, which in turn depends on the surface self-diffusion coefficient of the electrode material under AMTEC operating conditions. Grain growth rates for molybdenum and platinum-tungsten alloy electrodes have been determined, and have been used to predict operating lifetimes of AMTEC electrodes. For lifetimes of 10 years of more, Mo may be used in AMTEC cells only at operating temperatures under 1100 K. Pt(sub 2.5)W electrodes may be used at much higher temperatures, up to 1300 K.
    Keywords: Solid-State Physics
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-08
    Description: Thin film, high performance electrodes which can operate in high temperature environments are necessary for many devices which use a solid electrolyte. Electrodes of rhodium-tungsten alloy have been deposited on solid electrolyte using photolytic chemical vapor deposition (PCVD). A technique for depositing electrodes and current collection grids simultaneously has been developed using the prenucleation characteristics of PCVD. This technique makes it possible to fabricate electrodes which allow vapor transport through the thin (〈1 (micro)m) portions of the electrode while integral thick grid lines improve the electronic conductivity of the electrode, thus improving overall performance.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-08
    Description: The preparation of dense potassium beta.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-08
    Description: The microscopic mechanism of the alkali ion-electron recombination reaction at the three phase boundary zone formed by a porous metal electrode in the alkali vapor on the surface of an alkali beta'-alumina solid electrolyte (BASE) ceramic has been studied by comparison of the expected rates for the three simplest reaction mechanisms with known temperature dependent rate data; and the physical parameters of typical porous metal electrode/BASE/alkali metal vapor reaction zones. The three simplest reactions are tunneling of electrons from the alkali coated electrode to a surface bound alkali metal ion; emission of an electron from the electrode with subsequent capture by a surface bound alkali metal ion; and thermal emission of an alkali cation from the BASE and its capture on the porous metal electrode surface where it may recombine with an electron. Only the first reaction adequately accounts for both the high observed rate and its temperature dependence. New results include crude modeling of simple, one step, three phase, solid/solid/gas electrochemical reaction.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-08
    Description: The mechanisms of mass transport of an alkali metal through porous metal electrodes in alkali metal thermal-to-electric converter AMTEC cells is important in optimizing these high current density devices, but also affords the opportunity to investigate a variety of simple mass transport modes at high temperatures via electrochemical techniques. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes. Quantitative investigations of Na transport through WPt(sub 3.5) via surface or grain boundary diffusion, and K transport through porous Mo electrodes by free molecular flow, over large ranges of temperature have been performed. WPt(sub 3.5) has especially low transport impedance over the 950 to 1200K temperature range. New results are the Na through porous WPt(sub 3.5) and K through porous Mo diffusion rates and mechanisms.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-08
    Description: The mechanisms of electrode kinetics and mass transport of alkali metal oxidation and alkali metal cation reduction at the solid electrolyte/porous electrode boundary as well as alkali metal transport through porous metal electrodes has important applications in optimizing device performance in alkali metal thermal to electric converter (AMTEC) cells which are high temperature, high current density electrochemical cells. Basic studies of these processes also affords the opportunity to investigate a very basic electrochemical reaction over a wide range of conditions; and a variety of mass transport modes at high temperatures via electrochemical techniques. The temperature range of these investigations covers 700K to 1240K; the alkali metal vapor pressures range from about 10(sup -2) to 10(sup 2) Pa; and electrodes studied have included Mo, W, Mo/Na(sub 2)MoO(sub 4), W/Na(sub 2)WO(sub 4), WPt(sub x), and WRh(sub x) (1.0 〈 x 〈 6.0 ) with Na at Na-beta'-alumina, and Mo with K at K-beta'-alumina. Both liquid metal/solid electrolyte/alkali metal vapor and alkali metal vapor/solid electrolyte/vapor cells have been used to characterize the reaction and transport processes. We have previously reported evidence of ionic, free molecular flow, and surface transport of sodium in several types of AMTEC electrodes.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...