ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-01-25
    Description: We investigate the potential and accuracy of clustering-based redshift estimation using the method proposed by Ménard et al. This technique enables the inference of redshift distributions from measurements of the spatial clustering of arbitrary sources, using a set of reference objects for which redshifts are known. We apply it to a sample of spectroscopic galaxies from the Sloan Digital Sky Survey (SDSS) and show that, after carefully controlling the sampling efficiency over the sky, we can estimate redshift distributions with high accuracy. Probing the full colour space of the SDSS galaxies, we show that we can recover the corresponding mean redshifts with an accuracy ranging from z  = 0.001 to 0.01. We indicate that this mapping can be used to infer the redshift probability distribution of a single galaxy. We show how the lack of information on the galaxy bias limits the accuracy of the inference and show comparisons between clustering redshifts and photometric redshifts for this data set. This analysis demonstrates, using real data, that clustering-based redshift inference provides a powerful data-driven technique to explore the redshift distribution of arbitrary data sets, without any prior knowledge of the spectral energy distribution of the sources.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-10-19
    Description: We present an investigation into the effects of survey systematics such as varying depth, point spread function size, and extinction on the galaxy selection and correlation in photometric, multi-epoch, wide area surveys. We take the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS) as an example. Variations in galaxy selection due to systematics are found to cause density fluctuations of up to 10 per cent for some small fraction of the area for most galaxy redshift slices and as much as 50 per cent for some extreme cases of faint high-redshift samples. This results in correlations of galaxies against survey systematics of order ~1 per cent when averaged over the survey area. We present an empirical method for mitigating these systematic correlations from measurements of angular correlation functions using weighted random points. These weighted random catalogues are estimated from the observed galaxy overdensities by mapping these to survey parameters. We are able to model and mitigate the effect of systematic correlations allowing for non-linear dependences of density on systematics. Applied to CFHTLenS, we find that the method reduces spurious correlations in the data by a factor of 2 for most galaxy samples and as much as an order of magnitude in others. Such a treatment is particularly important for an unbiased estimation of very small correlation signals, as e.g. from weak gravitational lensing magnification bias. We impose a criterion for using a galaxy sample in a magnification measurement of the majority of the systematic correlations show improvement and are less than 10 per cent of the expected magnification signal when combined in the galaxy cross-correlation. After correction the galaxy samples in CFHTLenS satisfy this criterion for z phot  〈 0.9 and will be used in a future analysis of magnification.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-12-03
    Description: Cross-correlating the Planck High Frequency Instrument maps against quasars from the Sloan Digital Sky Survey DR7, we estimate the intensity distribution of the cosmic infrared background (CIB) over the redshift range 0 〈  z  〈 5. We detect redshift-dependent spatial cross-correlations between the two data sets using the 857, 545, and 353 GHz channels and we obtain upper limits at 217 GHz consistent with expectations. At all frequencies with detectable signal we infer a redshift distribution peaking around z  ~ 1.2 and find the recovered spectrum to be consistent with emission arising from star-forming galaxies. By assuming simple modified blackbody and Kennicutt relations, we estimate dust and star formation rate density as a function of redshift, finding results consistent with earlier multiwavelength measurements over a large portion of cosmic history. However, we note that, lacking mid-infrared coverage, we are not able to make an accurate determination of the mean temperature for the dust responsible for the CIB. Our results demonstrate that clustering-based redshift inference is a valuable tool for measuring the entire evolution history of the cosmic star formation rate from a single and homogeneous data set.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2014-03-25
    Description: Gravitational lensing magnification is measured with a significance of 9.7 on a large sample of galaxy clusters in the Canada–France–Hawaii Telescope Lensing Survey (CFHTLenS). This survey covers ~154 deg 2 and contains over 18 000 cluster candidates at redshifts 0.2 ≤  z  ≤ 0.9, detected using the 3D-Matched Filter cluster-finder of Milkeraitis et al. We fit composite-NFW models to the ensemble, accounting for cluster miscentring, source-lens redshift overlap, as well as nearby structure (the two-halo term), and recover mass estimates of the cluster dark matter haloes in range of ~10 13 M to 2 10 14 M . Cluster richness is measured for the entire sample, and we bin the clusters according to both richness and redshift. A mass–richness relation M 200  =  M 0 ( N 200 /20) β is fit to the measurements. For two different cluster miscentring models, we find consistent results for the normalization and slope, M 0  = (2.3 ± 0.2) 10 13 M , β = 1.4 ± 0.1 and M 0  = (2.2 ± 0.2) 10 13 M , β = 1.5 ± 0.1. We find that accounting for the full redshift distribution of lenses and sources is important, since any overlap can have an impact on mass estimates inferred from flux magnification.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-05-22
    Description: We apply clustering-based redshift inference to all extended sources from the Sloan Digital Sky Survey photometric catalogue, down to magnitude r  = 22. We map the relationships between colours and redshift, without assumption of the sources’ spectral energy distributions (SEDs). We identify and locate star-forming quiescent galaxies, and active galactic nuclei, as well as colour changes due to spectral features, such as the 4000 Å break, redshifting through specific filters. Our mapping is globally in good agreement with colour–redshift tracks computed with SED templates, but reveals informative differences, such as the need for a lower fraction of M-type stars in certain templates. We compare our clustering-redshift estimates to photometric redshifts and find these two independent estimators to be in good agreement at each limiting magnitude considered. Finally, we present the global clustering-redshift distribution of all Sloan extended sources, showing objects up to z  ~ 0.8. While the overall shape agrees with that inferred from photometric redshifts, the clustering-redshift technique results in a smoother distribution, with no indication of structure in redshift space suggested by the photometric-redshift estimates (likely artefacts imprinted by their spectroscopic training set). We also infer a higher fraction of high-redshift objects. The mapping between the four observed colours and redshift can be used to estimate the redshift probability distribution function of individual galaxies. This work is an initial step towards producing a general mapping between redshift and all available observables in the photometric space, including brightness, size, concentration, and ellipticity.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-12-25
    Description: We develop a statistical estimator to infer the redshift probability distribution of a photometric sample of galaxies from its angular cross-correlation in redshift bins with an overlapping spectroscopic sample. This estimator is a minimum-variance weighted quadratic function of the data: a quadratic estimator. This extends and modifies the methodology presented by McQuinn & White. The derived source redshift distribution is degenerate with the source galaxy bias, which must be constrained via additional assumptions. We apply this estimator to constrain source galaxy redshift distributions in the Kilo-Degree imaging survey through cross-correlation with the spectroscopic 2-degree Field Lensing Survey, presenting results first as a binned step-wise distribution in the range z 〈 0.8, and then building a continuous distribution using a Gaussian process model. We demonstrate the robustness of our methodology using mock catalogues constructed from N -body simulations, and comparisons with other techniques for inferring the redshift distribution.
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-12-01
    Description: Context. Measuring and calibrating relations between cluster observables is critical for resource-limited studies. The mass–richness relation of clusters offers an observationally inexpensive way of estimating masses. Its calibration is essential for cluster and cosmological studies, especially for high-redshift clusters. Weak gravitational lensing magnification is a promising and complementary method to shear studies, that can be applied at higher redshifts. Aims. We aim to employ the weak lensing magnification method to calibrate the mass–richness relation up to a redshift of 1.4. We used the Spitzer Adaptation of the Red-Sequence Cluster Survey (SpARCS) galaxy cluster candidates (0.2 〈 z 〈 1.4) and optical data from the Canada France Hawaii Telescope (CFHT) to test whether magnification can be effectively used to constrain the mass of high-redshift clusters. Methods. Lyman-break galaxies (LBGs) selected using the u-band dropout technique and their colours were used as a background sample of sources. LBG positions were cross-correlated with the centres of the sample of SpARCS clusters to estimate the magnification signal, which was optimally-weighted using an externally-calibrated LBG luminosity function. The signal was measured for cluster sub-samples, binned in both redshift and richness. Results. We measured the cross-correlation between the positions of galaxy cluster candidates and LBGs and detected a weak lensing magnification signal for all bins at a detection significance of 2.6–5.5σ. In particular, the significance of the measurement for clusters with z〉 1.0 is 4.1σ; for the entire cluster sample we obtained an average M200 of 1.28 -0.21+0.23 × 1014 M⊙. Conclusions. Our measurements demonstrated the feasibility of using weak lensing magnification as a viable tool for determining the average halo masses for samples of high redshift galaxy clusters. The results also established the success of using galaxy over-densities to select massive clusters at z 〉 1. Additional studies are necessary for further modelling of the various systematic effects we discussed.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-08-01
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-01-01
    Description: We present a tomographic cosmic shear analysis of the Kilo-Degree Survey (KiDS) combined with the VISTA Kilo-Degree Infrared Galaxy Survey. This is the first time that a full optical to near-infrared data set has been used for a wide-field cosmological weak lensing experiment. This unprecedented data, spanning 450 deg2, allows us to significantly improve the estimation of photometric redshifts, such that we are able to include robustly higher-redshift sources for the lensing measurement, and – most importantly – to solidify our knowledge of the redshift distributions of the sources. Based on a flat ΛCDM model we find S8 ≡ σ8 Ωm/0.3 = 0.737+0.040−0.036 in a blind analysis from cosmic shear alone. The tension between KiDS cosmic shear and the Planck-Legacy CMB measurements remains in this systematically more robust analysis, with S8 differing by 2.3σ. This result is insensitive to changes in the priors on nuisance parameters for intrinsic alignment, baryon feedback, and neutrino mass. KiDS shear measurements are calibrated with a new, more realistic set of image simulations and no significant B-modes are detected in the survey, indicating that systematic errors are under control. When calibrating our redshift distributions by assuming the 30-band COSMOS-2015 photometric redshifts are correct (following the Dark Energy Survey and the Hyper Suprime-Cam Survey), we find the tension with Planck is alleviated. The robust determination of source redshift distributions remains one of the most challenging aspects for future cosmic shear surveys.
    Print ISSN: 0004-6361
    Electronic ISSN: 1432-0746
    Topics: Physics
    Published by EDP Sciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2016-12-08
    Description: We present cosmological parameter constraints from a tomographic weak gravitational lensing analysis of ~450 deg 2 of imaging data from the Kilo Degree Survey (KiDS). For a flat cold dark matter (CDM) cosmology with a prior on H 0 that encompasses the most recent direct measurements, we find $S_8\equiv \sigma _8\sqrt{\Omega _{\rm m}/0.3}=0.745\pm 0.039$ . This result is in good agreement with other low-redshift probes of large-scale structure, including recent cosmic shear results, along with pre- Planck cosmic microwave background constraints. A 2.3 tension in S 8 and ‘substantial discordance’ in the full parameter space is found with respect to the Planck 2015 results. We use shear measurements for nearly 15 million galaxies, determined with a new improved ‘self-calibrating’ version of lens fit validated using an extensive suite of image simulations. Four-band ugri photometric redshifts are calibrated directly with deep spectroscopic surveys. The redshift calibration is confirmed using two independent techniques based on angular cross-correlations and the properties of the photometric redshift probability distributions. Our covariance matrix is determined using an analytical approach, verified numerically with large mock galaxy catalogues. We account for uncertainties in the modelling of intrinsic galaxy alignments and the impact of baryon feedback on the shape of the non-linear matter power spectrum, in addition to the small residual uncertainties in the shear and redshift calibration. The cosmology analysis was performed blind. Our high-level data products, including shear correlation functions, covariance matrices, redshift distributions, and Monte Carlo Markov chains are available at http://kids.strw.leidenuniv.nl .
    Print ISSN: 0035-8711
    Electronic ISSN: 1365-2966
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...