ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 1
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Miller, Garielle M; Watson, Sue-Ann; McCormick, Mark I; Munday, Philip L (2013): Increased CO2 stimulates reproduction in a coral reef fish. Global Change Biology, 19(10), 3037-3045, https://doi.org/10.1111/gcb.12259
    Publication Date: 2024-03-15
    Description: Ocean acidification is predicted to negatively impact the reproduction of many marine species, either by reducing fertilization success or diverting energy from reproductive effort. While recent studies have demonstrated how ocean acidification will affect larval and juvenile fishes, little is known about how increasing partial pressure of carbon dioxide (pCO2) and decreasing pH might affect reproduction in adult fishes. We investigated the effects of near-future levels of pCO2 on the reproductive performance of the cinnamon anemonefish, Amphiprion melanopus, from the Great Barrier Reef, Australia. Breeding pairs were held under three CO2 treatments [Current-day Control (430 µatm), Moderate (584 µatm) and High (1032 µatm)] for a 9-month period that included the summer breeding season. Unexpectedly, increased CO2 dramatically stimulated breeding activity in this species of fish. Over twice as many pairs bred in the Moderate (67% of pairs) and High (55%) compared to the Control (27%) CO2 treatment. Pairs in the High CO2 group produced double the number of clutches per pair and 67% more eggs per clutch compared to the Moderate and Control groups. As a result, reproductive output in the High group was 82% higher than that in the Control group and 50% higher than that in the Moderate group. Despite the increase in reproductive activity, there was no difference in adult body condition among the three treatment groups. There was no significant difference in hatchling length between the treatment groups, but larvae from the High CO2 group had smaller yolks than Controls. This study provides the first evidence of the potential effects of ocean acidification on key reproductive attributes of marine fishes and, contrary to expectations, demonstrates an initially stimulatory (hormetic) effect in response to increased pCO2. However, any long-term consequences of increased reproductive effort on individuals or populations remain to be determined.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Amphiprion melanopus; Animalia; Aragonite saturation state; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Clutches per month; Clutches per pair; Clutches per pair, standard error; Coast and continental shelf; Eggs area; Eggs area, standard error; Eggs per clutch; Eggs per clutch, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Growth/Morphology; Hatchling length; Hatchling length, standard error; Identification; Laboratory experiment; Mesocosm or benthocosm; Month; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric titration; Reproduction; Reproductive output per clutch; Reproductive output per clutch, standard error; Salinity; Single species; South Pacific; Species; Temperature, standard deviation; Temperature, water; Treatment; Tropical; Yolk area; Yolk area, standard error
    Type: Dataset
    Format: text/tab-separated-values, 606 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Welch, Megan J; Watson, Sue-Ann; Welsh, Justin Q; McCormick, Mark I; Munday, Philip L (2014): Effects of elevated CO2 on fish behaviour undiminished by transgenerational acclimation. Nature Climate Change, 4(12), 1086-1089, https://doi.org/10.1038/nclimate2400
    Publication Date: 2024-03-15
    Description: Behaviour and sensory performance of marine fishes are impaired at CO2 levels projected to occur in the ocean in the next 50-100 years, and there is limited potential for within-generation acclimation to elevated CO2. However, whether fish behaviour can acclimate or adapt to elevated CO2 over multiple generations remains unanswered. We tested for transgenerational acclimation of reef fish olfactory preferences and behavioural lateralization at moderate (656 µatm) and high (912 µatm) end-of-century CO2 projections. Juvenile spiny damselfish, Acanthochromis polyacanthus, from control parents (446 µatm) exhibited an innate avoidance to chemical alarm cue (CAC) when reared in control conditions. In contrast, juveniles lost their innate avoidance of CAC and even became strongly attracted to CAC when reared at elevated CO2 levels. Juveniles from parents maintained at mid-CO2 and high-CO2 levels also lost their innate avoidance of CAC when reared in elevated CO2, demonstrating no capacity for transgenerational acclimation of olfactory responses. Behavioural lateralization was also disrupted for juveniles reared under elevated CO2, regardless of parental conditioning. Our results show minimal potential for transgenerational acclimation in this fish, suggesting that genetic adaptation will be necessary to overcome the effects of ocean acidification on behaviour.
    Keywords: Acanthochromis polyacanthus; Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Lateralization; Lateralization, standard error; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Orpheus_Island; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Potentiometric; Potentiometric titration; Replicates; Salinity; Salinity, standard deviation; Single species; South Pacific; Species; Temperature, water; Temperature, water, standard deviation; Time; Time, standard error; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 9522 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ferrari, Maud C O; McCormick, Mark I; Munday, Philip L; Meekan, Mark; Dixson, Danielle L; Lonnstedt, Öona; Chivers, Douglas P (2012): Effects of ocean acidification on visual risk assessment in coral reef fishes. Functional Ecology, 26(3), 553-558, https://doi.org/10.1111/j.1365-2435.2011.01951.x
    Publication Date: 2024-03-15
    Description: 1. With the global increase in CO2 emissions, there is a pressing need for studies aimed at understanding the effects of ocean acidification on marine ecosystems. Several studies have reported that exposure to CO2 impairs chemosensory responses of juvenile coral reef fishes to predators. Moreover, one recent study pointed to impaired responses of reef fish to auditory cues that indicate risky locations. These studies suggest that altered behaviour following exposure to elevated CO2 is caused by a systemic effect at the neural level. 2. The goal of our experiment was to test whether juvenile damselfish Pomacentrus amboinensis exposed to different levels of CO2 would respond differently to a potential threat, the sight of a large novel coral reef fish, a spiny chromis, Acanthochromis polyancanthus, placed in a watertight bag. 3. Juvenile damselfish exposed to 440 (current day control), 550 or 700 µatm CO2 did not differ in their response to the chromis. However, fish exposed to 850 µatm showed reduced antipredator responses; they failed to show the same reduction in foraging, activity and area use in response to the chromis. Moreover, they moved closer to the chromis and lacked any bobbing behaviour typically displayed by juvenile damselfishes in threatening situations. 4. Our results are the first to suggest that response to visual cues of risk may be impaired by CO2 and provide strong evidence that the multi-sensory effects of CO2 may stem from systematic effects at the neural level.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Change; Change, standard error; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Distance; Distance, standard error; EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Lizard_Island_OA; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Pomacentrus amboinensis; Potentiometric; Potentiometric titration; Salinity; Single species; South Pacific; Species; Temperature, water; Temperature, water, standard error; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 116 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Munday, Philip L; McCormick, Mark I; Meekan, Mark; Dixson, Danielle L; Watson, Sue-Ann; Chivers, Douglas P; Ferrari, Maud C O (2012): Selective mortality associated with variation in CO2 tolerance in a marine fish. Ocean Acidification, 1, 1-5, https://doi.org/10.2478/oac-2012-0001
    Publication Date: 2024-03-15
    Description: Predicted future CO2 levels can affect reproduction, growth, and behaviour of many marine organisms. However, the capacity of species to adapt to predicted changes in ocean chemistry is largely unknown. We used a unique field-based experiment to test for differential survival associated with variation in CO2 tolerance in a wild population of coral-reef fishes. Juvenile damselfish exhibited variation in their response to elevated (700 µatm) CO2 when tested in the laboratory and this influenced their behaviour and risk of mortality in the wild. Individuals that were sensitive to elevated CO2 were more active and move further from shelter in natural coral reef habitat and, as a result, mortality from predation was significantly higher compared with individuals from the same treatment that were tolerant of elevated CO2. If individual variation in CO2 tolerance is heritable, this selection of phenotypes tolerant to elevated CO2 could potentially help mitigate the effects of ocean acidification.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Distance; Distance, standard error; Distance from shelter; Distance from shelter, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Group; Laboratory experiment; Lizard_Island; Lizard Island, northern Great Barrier Reef; Mortality/Survival; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Pomacentrus wardi; Potentiometric; Potentiometric titration; Salinity; Single species; South Pacific; Species; Survival; Temperature, water; Temperature, water, standard deviation; Time in hours; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 627 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Allan, Bridie J M; Domenici, Paolo; McCormick, Mark I; Watson, Sue-Ann; Munday, Philip L (2013): Elevated CO2 Affects Predator-Prey Interactions through Altered Performance. PLoS ONE, 8(3), e58520, https://doi.org/10.1371/journal.pone.0058520.t002
    Publication Date: 2024-03-15
    Description: Recent research has shown that exposure to elevated carbon dioxide (CO2) affects how fishes perceive their environment, affecting behavioral and cognitive processes leading to increased prey mortality. However, it is unclear if increased mortality results from changes in the dynamics of predator-prey interactions or due to prey increasing activity levels. Here we demonstrate that ocean pCO2 projected to occur by 2100 significantly effects the interactions of a predator-prey pair of common reef fish: the planktivorous damselfish Pomacentrus amboinensis and the piscivorous dottyback Pseudochromis fuscus. Prey exposed to elevated CO2 (880 µatm) or a present-day control (440 µatm) interacted with similarly exposed predators in a cross-factored design. Predators had the lowest capture success when exposed to elevated CO2 and interacting with prey exposed to present-day CO2. Prey exposed to elevated CO2 had reduced escape distances and longer reaction distances compared to prey exposed to present-day CO2 conditions, but this was dependent on whether the prey was paired with a CO2 exposed predator or not. This suggests that the dynamics of predator-prey interactions under future CO2 environments will depend on the extent to which the interacting species are affected and can adapt to the adverse effects of elevated CO2.
    Keywords: Alkalinity, total; Alkalinity, total, standard deviation; Animalia; Apparent looming threshold; Apparent looming threshold, standard error; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Distance; Distance, standard error; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide, standard deviation; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; pH, standard deviation; Pomacentrus amboinensis; Potentiometric; Potentiometric titration; Predation rate; Predation rate, standard error; Predator success; Pseudochromis fuscus; Salinity; South Pacific; Species; Species interaction; Temperature, water; Temperature, water, standard deviation; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 200 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Chivers, Douglas P; McCormick, Mark I; Nilsson, Göran E; Munday, Philip L; Watson, Sue-Ann; Meekan, Mark; Mitchell, Matthew D; Corkill, Katherine C; Ferrari, Maud C O (2014): Impaired learning of predators and lower prey survival under elevated CO2: a consequence of neurotransmitter interference. Global Change Biology, 20(2), 515-522, https://doi.org/10.1111/gcb.12291
    Publication Date: 2024-03-15
    Description: Ocean acidification is one of the most pressing environmental concerns of our time, and not surprisingly, we have seen a recent explosion of research into the physiological impacts and ecological consequences of changes in ocean chemistry. We are gaining considerable insights from this work, but further advances require greater integration across disciplines. Here, we showed that projected near-future CO2 levels impaired the ability of damselfish to learn the identity of predators. These effects stem from impaired neurotransmitter function; impaired learning under elevated CO2 was reversed when fish were treated with gabazine, an antagonist of the GABA-A receptor - a major inhibitory neurotransmitter receptor in the brain of vertebrates. The effects of CO2 on learning and the link to neurotransmitter interference were manifested as major differences in survival for fish released into the wild. Lower survival under elevated CO2 , as a result of impaired learning, could have a major influence on population recruitment.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Lizard_Island_OA; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Pomacentrus amboinensis; Potentiometric; Potentiometric titration; Proportion; Proportion, standard error; Salinity; South Pacific; Species; Species interaction; Temperature, water; Temperature, water, standard error; Time in days; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 416 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Ferrari, Maud C O; Manassa, Rachel; Dixson, Danielle L; Munday, Philip L; McCormick, Mark I; Meekan, Mark; Sihler, H; Chivers, Douglas P (2012): Effects of ocean acidification on learning in coral reef fishes. PLoS ONE, 7(2), e31478, https://doi.org/10.1371/journal.pone.0031478
    Publication Date: 2024-03-15
    Description: Ocean acidification has the potential to cause dramatic changes in marine ecosystems. Larval damselfish exposed to concentrations of CO2 predicted to occur in the mid- to late-century show maladaptive responses to predator cues. However, there is considerable variation both within and between species in CO2 effects, whereby some individuals are unaffected at particular CO2 concentrations while others show maladaptive responses to predator odour. Our goal was to test whether learning via chemical or visual information would be impaired by ocean acidification and ultimately, whether learning can mitigate the effects of ocean acidification by restoring the appropriate responses of prey to predators. Using two highly efficient and widespread mechanisms for predator learning, we compared the behaviour of pre-settlement damselfish Pomacentrus amboinensis that were exposed to 440 µatm CO2 (current day levels) or 850 µatm CO2, a concentration predicted to occur in the ocean before the end of this century. We found that, regardless of the method of learning, damselfish exposed to elevated CO2 failed to learn to respond appropriately to a common predator, the dottyback, Pseudochromis fuscus. To determine whether the lack of response was due to a failure in learning or rather a short-term shift in trade-offs preventing the fish from displaying overt antipredator responses, we conditioned 440 or 700 µatm-CO2 fish to learn to recognize a dottyback as a predator using injured conspecific cues, as in Experiment 1. When tested one day post-conditioning, CO2 exposed fish failed to respond to predator odour. When tested 5 days post-conditioning, CO2 exposed fish still failed to show an antipredator response to the dottyback odour, despite the fact that both control and CO2-treated fish responded to a general risk cue (injured conspecific cues). These results indicate that exposure to CO2 may alter the cognitive ability of juvenile fish and render learning ineffective.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Change; Change, standard error; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Experimental treatment; Figure; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Group; Laboratory experiment; Lizard_Island_OA; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Pomacentrus amboinensis; Potentiometric; Potentiometric titration; Salinity; Single species; South Pacific; Species; Temperature, water; Temperature, water, standard error; Treatment; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 780 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Allan, Bridie J M; Domenici, Paolo; Watson, Sue Ann; Munday, Philip L; McCormick, Mark I (2017): Warming has a greater effect than elevated CO2 on predator–prey interactions in coral reef fish. Proceedings of the Royal Society B-Biological Sciences, 284(1857), 20170784, https://doi.org/10.1098/rspb.2017.0784
    Publication Date: 2024-03-15
    Description: Ocean acidification and warming, driven by anthropogenic CO2 emissions, are considered to be among the greatest threats facing marine organisms. While each stressor in isolation has been studied extensively, there has been less focus on their combined effects, which could impact key ecological processes. We tested the independent and combined effects of short-term exposure to elevated CO2 and temperature on the predator–prey interactions of a common pair of coral reef fishes (Pomacentrus wardi and its predator, Pseudochromis fuscus). We found that predator success increased following independent exposure to high temperature and elevated CO2. Overall, high temperature had an overwhelming effect on the escape behaviour of the prey compared with the combined exposure to elevated CO2 and high temperature or the independent effect of elevated CO2. Exposure to high temperatures led to an increase in attack and predation rates. By contrast, we observed little influence of elevated CO2 on the behaviour of the predator, suggesting that the attack behaviour of P. fuscus was robust to this environmental change. This is the first study to address how the kinematics and swimming performance at the basis of predator–prey interactions may change in response to concurrent exposure to elevated CO2 and high temperatures and represents an important step to forecasting the responses of interacting species to climate change.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Apparent looming threshold; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Capture success; Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); Experiment duration; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Laboratory experiment; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Pomacentrus wardi; Predator attack distance; Predator attack speed; Prey escape distance; Prey escape speed; Prey reaction distance; Pseudochromis fuscus; Registration number of species; Salinity; South Pacific; Species; Species interaction; Temperature; Temperature, water; Temperature, water, standard error; Treatment; Tropical; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 4276 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2024-03-15
    Description: Oceans of the future are predicted to be more acidic and noisier, particularly along the productive coastal fringe. This study examined the independent and combined effects of short-term exposure to elevated CO2 and boat noise on the predator–prey interactions of a pair of common coral reef fishes (Pomacentrus wardi and its predator, Pseudochromis fuscus). Successful capture of prey by predators was the same regardless of whether the pairs had been exposed to ambient control conditions, the addition of either playback of boat noise, elevated CO2 (925 µatm) or both stressors simultaneously. The kinematics of the interaction were the same for all stressor combinations and differed from the controls. The effects of CO2 or boat noise were the same, suggesting that their effects were substitutive in this situation. Prey reduced their perception of threat under both stressors individually and when combined, and this coincided with reduced predator attack distances and attack speeds. The lack of an additive or multiplicative effect when both stressors co-occurred was notable given the different mechanisms involved in sensory disruptions and highlights the importance of determining the combined effects of key drivers to aid in predicting community dynamics under future environmental scenarios.
    Keywords: Alkalinity, total; Alkalinity, total, standard error; Animalia; Apparent looming threshold; Aragonite saturation state; Attack rate; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Coast and continental shelf; Containers and aquaria (20-1000 L or 〈 1 m**2); EXP; Experiment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Lizard_Island_OA; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Other; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; Pomacentrus wardi; Potentiometric; Potentiometric titration; Predation rate; Predator attack distance; Predator attack speed; Prey escape distance; Prey escape speed; Prey reaction distance; Pseudochromis fuscus; Registration number of species; Salinity; Salinity, standard error; South Pacific; Species; Species interaction; Temperature, water; Temperature, water, standard error; Treatment; Tropical; Type; Uniform resource locator/link to reference
    Type: Dataset
    Format: text/tab-separated-values, 2736 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Cripps, Ingrid L; Munday, Philip L; McCormick, Mark I (2011): Ocean acidification affects prey detection by a predatory reef fish. PLoS ONE, 6(7), e22736, https://doi.org/10.1371/journal.pone.0022736
    Publication Date: 2024-03-15
    Description: Changes in olfactory-mediated behaviour caused by elevated CO2 levels in the ocean could affect recruitment to reef fish populations because larval fish become more vulnerable to predation. However, it is currently unclear how elevated CO2 will impact the other key part of the predator-prey interaction - the predators. We investigated the effects of elevated CO2 and reduced pH on olfactory preferences, activity levels and feeding behaviour of a common coral reef meso-predator, the brown dottyback (Pseudochromis fuscus). Predators were exposed to either current-day CO2 levels or one of two elevated CO2 levels (~600 µatm or ~950 µatm) that may occur by 2100 according to climate change predictions. Exposure to elevated CO2 and reduced pH caused a shift from preference to avoidance of the smell of injured prey, with CO2treated predators spending approximately 20% less time in a water stream containing prey odour compared with controls. Furthermore, activity levels of fish was higher in the high CO2 treatment and feeding activity was lower for fish in the mid CO2treatment; indicating that future conditions may potentially reduce the ability of the fish to respond rapidly to fluctuations in food availability. Elevated activity levels of predators in the high CO2 treatment, however, may compensate for reduced olfactory ability, as greater movement facilitated visual detection of food. Our findings show that, at least for the species tested to date, both parties in the predator-prey relationship may be affected by ocean acidification. Although impairment of olfactory-mediated behaviour of predators might reduce the risk of predation for larval fishes, the magnitude of the observed effects of elevated CO2 acidification appear to be more dramatic for prey compared to predators. Thus, it is unlikely that the altered behaviour of predators is sufficient to fully compensate for the effects of ocean acidification on prey mortality.
    Keywords: Alkalinity, Gran titration (Gran, 1950); Alkalinity, total; Alkalinity, total, standard error; Animalia; Aragonite saturation state; Behaviour; Bicarbonate ion; Calcite saturation state; Calculated using CO2SYS; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Chordata; Containers and aquaria (20-1000 L or 〈 1 m**2); Distance from shelter; Distance from shelter, standard error; EPOCA; EUR-OCEANS; European network of excellence for Ocean Ecosystems Analysis; European Project on Ocean Acidification; Experimental treatment; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; Nekton; OA-ICC; Ocean Acidification International Coordination Centre; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Partial pressure of carbon dioxide (water) at sea surface temperature (wet air), standard error; Pelagos; pH; pH, standard error; pH meter (Hach meter HQ40D); Proportion of time; Proportion of time, standard error; Pseudochromis fuscus; Pseudochromis fuscus, feeding response time; Pseudochromis fuscus, feeding response time, standard error; Pseudochromis fuscus, feeding strikes; Pseudochromis fuscus, feeding strikes, standard error; Pseudochromis fuscus, movement behaviour; Pseudochromis fuscus, movement behaviour, standard error; Salinity; Single species; South Pacific; Temperature, standard deviation; Temperature, water; Tropical
    Type: Dataset
    Format: text/tab-separated-values, 156 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...