ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-03-31
    Description: Widely used sequence stratigraphic models predict that specific facies assemblages alternate in the stratigraphy of deep-sea fans, depending on the cyclic nature of sea-level variations. Our work tests this assumption through facies reconstruction of submarine fans that are growing in a small basin along the tectonically active Sicilian margin. Connected canyons have heads close to the coastline; they can be river connected or littoral cell–connected, the first receiving sediment from hyperpycnal flows, the latter intercepting shelf sediment dispersal pathways. Hyperpycnal flows directly discharge river-born sediment into the head of the river-connected canyon and originate a large turbidite fan. A drift formed by the longshore redistribution of sediment of a nearby delta introduces sediment to the head of the littoral cell–connected canyon, forming turbidity currents that flow within the canyon to reach the basin plain. However, since sediment failure and landslide processes are common in the slope part of the system, a mixed fan, consisting of both turbidites and mass-transport deposits, is formed. Disconnected canyons, with heads at the shelf edge far from the coastline, are fed by canyon head and levee-wedge failures, resulting in mass-transport or mixed fan deposition, the latter developing when the seafloor gradient or the lithology of the failed sediment allows turbidity current formation. Connected canyons form in areas with high uplift rates, where the shelf is narrow and steep and the shelf edge is at a relatively shallow depth. Disconnected canyons develop where there are lower uplift rates or subsidence, where the shelf is large and relatively gentle with a deeper shelf edge. It is deduced that the relative vertical movements of fault-bound blocks control whether canyons are connected to the coast at the present day. The role of tectonics in controlling the canyon feeding processes and the facies of submarine fan growth during highstand periods is therefore highlighted. A further view that arises from our paper is that in active margins, the slope portion of fan systems, through seafloor instability and variations in channel gradient, is a key factor in determining the final deep-sea fan facies, regardless of the distance between the coast and the canyon. The concomitant growth of turbidites, mass-transport deposits, and mixed fans demonstrates that models that predict changes in submarine fan facies on the basis of sea-level cycles do not necessarily apply to systems developed along tectonically active margins.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-01
    Description: Although spreading rate is commonly taken as a proxy for decompression mantle melting at mid-ocean ridges (MORs), magmatism at back-arc spreading centers (BASCs) is further influenced by the subduction-related flux melting of the mantle. These regions consequently show a diversity of crustal structures, lava compositions, and morphologies not typically found in MORs. Here we investigate the crustal plumbing system of the small-scale, Marsili back-arc spreading center of the Southern Tyrrhenian Sea using plagioclase data from a wide spectrum of lavas (basalts to andesites) dredged from its summit and flanks. We employ petrological modeling to identify the plagioclase populations carried in the individual lavas, allocate them to plausible magmatic components present within the plumbing system, and trace the processes occurring during magma ascent to the surface. The properties of the system, such as mush porosity and abundance of the melt bodies, vary from one magma extraction zone to another along the BASC, evidencing the local variability of melt supply conditions. The plagioclase crystals document a range of relationships with the host lavas, indicating magma extraction from a composite, vertically extensive mush and melt-lens system resembling that of MORs. At the same time, however, in small BASCs, such as in the case of the Marsili Basin, crustal accretion and resulting morphology are significantly influenced by the three-dimensional setting of the basin margins. This is an important deviation from the conventional model based on the linear continuity and essentially two-dimensional framework of MORs. © 2017. American Geophysical Union. All Rights Reserved.
    Electronic ISSN: 1525-2027
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
  • 4
    Publication Date: 1997-01-01
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2008-08-27
    Print ISSN: 0094-8276
    Electronic ISSN: 1944-8007
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Elsevier
    In:  In: Science Technology Synergy for Research in the Marine Environment: Challenges for the XXI Century. , ed. by Beranzoli, L., Favali, P. and Smirglio, G. Developments in marine technology, 12 . Elsevier, Amsterdam, Netherlands, p. 2000. ISBN 0-7803-8669-8
    Publication Date: 2020-05-27
    Description: The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also described
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2020-04-01
    Description: The paper presents an overview of recent seafloor long-term single-frame multiparameter platform developed in the framework of the European Commission and Italian projects starting from the GEOSTAR prototype. The main features of the different systems are described as well as the sea missions that led to their validation. The ORION seafloor observatory network recently developed, based on the GEOSTAR-type platforms and engaged in a deep-sea mission at 3300 m w.d. in the Mediterranean Sea, is also described.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-07-14
    Description: Hydrothermal alteration may weaken volcanic rocks, causing the gravitational instability of portions of active volcanoes with potentially hazardous collapses. Here we show high‐resolution multibeam, magnetic and gravity surveys of the Marsili seamount, the largest active volcano of Europe located in the southern Tyrrhenian back‐arc basin. These surveys reveal zones with exceptionally low densities and with vanishing magnetizations, due probably to the comminution of basalts during hyaloclastic submarine eruptions and to their post‐eruptive hydrothermal alteration. The location of these regions correlates with morphological data showing the occurrence of past collapses. Similar evidence has been obtained from pre existing data at Vavilov Seamount, another older volcanic system in the Tyrrhenian back‐arc basin. Here a large volume of at least 50 km3 may have collapsed in a single event from its 40 km long western flank. Given the similarities between these volcanoes, a large collapse event may also be expected at Marsili.
    Description: Published
    Description: L03305
    Description: 2.6. TTC - Laboratorio di gravimetria, magnetismo ed elettromagnetismo in aree attive
    Description: 3.4. Geomagnetismo
    Description: JCR Journal
    Description: reserved
    Keywords: Marsili Seamount ; Gravity anomalies ; Magnetic anomalies ; Tyrrhenian Sea ; 04. Solid Earth::04.02. Exploration geophysics::04.02.02. Gravity methods ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.05. Geomagnetism::04.05.04. Magnetic anomalies ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-04-04
    Description: Stromboli is a 3000-m-high, conical island-arc volcano rising to 900 m above sea level. It is the most active volcano of the Aeolian Archipelago in the Tyrrhenian Sea (Italy). In the last 13 Kr four large-volume (1 km3) flank collapses have played an important role in shaping the northwestern flank (Sciara del Fuoco- SdF) of the volcano. These flank collapses have the potential to cause hazardous tsunamis in the Aeolian islands and farther afield along the Italian coast. In addition, smaller volume, much more frequent partial collapses of the SdF have been shown to be tsunami generating, potentially hazardous events One such partial collapse occurred on 30/12/2002, on the north-western flank of the island. The resulting landslide generated a 10-m-high tsunami that impacted the island. Multibeam bathymetry, side-scan sonar and seabed visual observations reveal that 25-30 x 106 m3 of sediments were deposited on the offshore from the Sciara del Fuoco landslide. Sediment samples have led to the recognition of a proximal coarse-grained landslide deposit on the volcano slope and a distal, cogenetic, sandy turbidite 24 km from the Stromboli shoreline. The proximal landslide deposit consists of two contiguous facies: (1) a chaotic, coarse grained (meter- to centimetre-sized clasts) deposit and (2) a sand deposit containing a lower, cross bedded sand layer and an upper structureless, pebbly sand bed, capped by seafloor ripple bedforms. The ubiquitous sand facies develops laterally with and over the coarse-grained deposits. Distally, a capping 2-3 cm-thick sand layer, not present in a pre-landslide September 2002 core, is interpreted as the finer grained turbidite equivalent of the proximal deposits. Characteristics of the SdF landslide deposits suggest that they derive from cohesionless, sandy-matrix, density flows. Flow rheology resulted in segregation of the density flow into sand-rich and clast-rich regions. Our results show that a range of density flow transitions, based principally on particle concentration and grain-size partitioning of cohesionless parent flows, can be identified in the proximal and distaldeposits of this relatively small-scale landslide event on Stromboli.
    Description: Unpublished
    Description: 23
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 4.3. TTC - Scenari di pericolosità vulcanica
    Description: open
    Keywords: Stromboli ; flank collapse ; tsunami ; submarine landslide deposits ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.08. Volcanic risk
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-04-04
    Description: A 4.8 m long gravity core was recovered on a relative topographic high in the northern part of the Marsili Basin (southern Tyrrhenian Sea) at a water depth of 3200 m. The core was taken in order to decipher the sedimentary record of the past volcanic events of the nearby Aeolian arc. A succession of thin (2 cm to 5 cm thick) fine-grained turbidites, mainly of volcaniclastic origin, topped by hemipelagic mud layers and a number of primary tephra layers were recovered by the core. The most prominent turbidite occurs in the lower part of the core at 385 cm. It consists of a 20 cm-thick, thinning-upward, pebble to sand-sized bed. Grain-size analysis and component compositions in the 0.063–0.250 mm size fractions were determined on thirty samples taken from primary tephra beds and the silty–sandy basal part of the volcaniclastic turbidite units. SEM scans and glass fraction chemical analyses were successively carried out on a selection of 17 samples. To aid source correlation and comparison, sub-aerial tephras of the Lower Pollara (Salina, 24 ± 3.6 ka), Gabellotto-Fiumebianco (Lipari, 8.5 or 11.5 ka), Monte Pilato (Lipari, 749 or 580 AD) and Secche di Lazzaro (Stromboli, ~ 5 ka) eruptions were also analyzed with the same procedure. Primary tephra respectively belonging to the eruptions of Lower Pollara, Gabellotto-Fiumebianco and Vesuvius (AP eruptions 3.5 ka–79 AD) were identified in the core at the expected relative stratigraphic depths. Two turbidite beds composed of monogenic glass shards were also identified and interpreted as the remobilisation of primary tephras of Secche di Lazzaro (Stromboli, 5 ka) and Pilato (Lipari, 580 or 749 AD). Tephrochronology results indicate that the cored sequence formed in the last 30 ka suggesting an average sedimentation rate of 0.15–0.17 mm/y. The thick pebbly sandy turbidite unit in the lower part of the core has component and glass composition compatible with the Lower Pollara volcanic sequence of Salina Island. In view of the grain-size and thickness of the turbidite unit, we suggest that it represents the deposit of a large failure event. The tephra corresponding to the Lower Pollara event lies below the turbidite unit, separated by 16 cm of hemipelagic mud, indicating that the collapse took place sometime after the eruption.
    Description: Published
    Description: 133-144
    Description: 2.3. TTC - Laboratori di chimica e fisica delle rocce
    Description: 3.5. Geologia e storia dei sistemi vulcanici
    Description: 3.6. Fisica del vulcanismo
    Description: JCR Journal
    Description: reserved
    Keywords: tephrochronology ; turbidity current ; flank collapse ; Marsili Basin ; gravity core ; 04. Solid Earth::04.04. Geology::04.04.04. Marine geology ; 04. Solid Earth::04.04. Geology::04.04.08. Sediments: dating, processes, transport ; 04. Solid Earth::04.08. Volcanology::04.08.05. Volcanic rocks
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...