ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 57 (1985), S. 2130-2134 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Journal of agricultural and food chemistry 42 (1994), S. 1035-1040 
    ISSN: 1520-5118
    Source: ACS Legacy Archives
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Ground water monitoring & remediation 13 (1993), S. 0 
    ISSN: 1745-6592
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Geosciences
    Notes: Laboratory flow visualization experiments, using glass beads as the porous medium, were conducted to study air sparging, an innovative technology for subsurface contaminant remediation. The purpose of these experiments was to observe how air flows through saturated porous media and to obtain a basic understanding of air plume formation and medium heterogeneity effects. The experiments indicate that air flow occurring in discrete, stable channels is the most probable flow behavior in medium to fine grained water saturated porous media and that medium heterogeneity plays an important role in the development of air channels. Several simulated scales of heterogeneities, from pore to field, have been studied. The results suggest that air channel formation is sensitive to the various scales of heterogeneities. Site-specific hydrogeologic settings have to be carefully reviewed before air sparging is applied to remediate sites contaminated by volatile organic compounds.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 55-57 (Aug. 2008), p. 393-396 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Typical fabric sound absorbing materials have excellent absorbing property in high frequency, but in low frequency the absorbing performance is bad. In this study the flame retarded hollow 3D crimp PET fiber and low melting point PET fiber were used to manufacture sound absorption sandwich board (SASB). By changing the skin material of sandwich structure that the low frequency of sound absorbed will improve. The SASB was combined with two skin materials and one core material. The skin materials were manufactured into the nonwoven fabrics by needle punched and thermal compressing process. The skin materials have two different thickness (0.02 mm and 0.5mm).The core material was combined five layers of loose nonwoven fabrics and bonding by thermal compressing at the same gauge (15 mm). The sound absorbing properties of core material and sandwich board were analyzed. The sound absorbing property was evaluated using two microphone impedance tube according to ASTM E1050-98. When the skin material thickness is 0.02 mm, both of the high frequency and low frequency sound absorption was optimized. When the skin material thickness is 0.5mm, the sound absorbing property is similar to typical fabric material. The high frequency sound absorption is excellent, but the low frequency sound absorption is bad
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 55-57 (Aug. 2008), p. 397-400 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: The treatment for wound is a common issue in nursing procedure. Especially in serious wound, the treatment for wound usually spends many costs and time. Generally, wound dressing is used to protect the wound from bacterial infection in the intervening period between hospitalization and grafting. The pectin and chitosan are natural polymers that have biocompatibility and biodegradability, and pectin and chitosan can be easy obtainment and low cost. Tencel is a regenerated fiber. The Tencel fibers are biodegradable and hydrophilic, and have stable capability of dimension. Therefore, if the pectin and chitosan can be properly developed and combine with the tencel fabric for dressing use, the cost and time for wound treatment could be effective reduction. The absorbent cotton fibers were blended with the tencel fibers to create the cotton/Tencel nonwoven substance using nonwoven manufacturing technique. Chitosan will be electrospun on the Tencel nonwoven substance to create chitosan/Tencel composite nonwoven fabric. Furthermore, the surface structure of chitosan/Tencel composite nonwoven was observed by using scanning electron microscopy (SEM) to examine spinning ability of chitosan. Additionally, the pectin solution was blended with calcium chloride solution. Then pectin blended solution was coated on the optimal chitosan/Tencel composite nonwoven fabric by using mesh printing technique to prepare composite dressing. The result shown the Tencel/chitosan/pectin composite dressing has good capabilities of water absorbency and evaporative water loss. This study showed that a novel process for medical dressing was useful, and the composite dressing had an advantage property on wound healing and protection
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 55-57 (Aug. 2008), p. 401-404 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Honeycomb structures are widely used in various engineering fields, including construction, the auto industry, packaging, the aerospace industry, medicine, and sports. The hexagon cells generate excellent structures and reduce material waste. Honeycomb structures have very good mechanical properties and are low cost. Nonwoven fabric is widely used in many applications because the manufacturing process for nonwoven fabric is easy and fast. In this study, Polylactic Acid (PLA) nonwoven fabric and Thermoplastic Polyurethane (TPU) honeycomb air cushion (TPU-HAC) materials were combined in a sandwich structure for impact protection. The PLA fibers and low-melting-point PLA fibers were used as raw materials to create PLA nonwoven fabric. The PLA fibers and low-melting-point PLA fibers were mixed at weight ratios of (10%, 20%, 30%, 40%, 50%). The mixed fibers were processed using needle punching and thermal bonding to create PLA nonwoven fabric. Additionally, the TPU-HACs were layered to generate various thicknesses (2/8/10 mm, 4/6/10 mm, 6/4/10 mm, 8/2/10 mm). The layered TPU-HAC materials was clamped between two PLA nonwoven fabrics to form a sandwich structure. Impact resistance was assessed using a falling- weight impact-resistance machine. Experimental findings indicate that impact resistance of the sandwich structure of the TPU-HAC materials improved when thin TPU-HAC material was placed on the thick TPU-HAC material. This study demonstrates that the sandwich structure of TPU-HAC materials as excellent impact absorption
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 55-57 (Aug. 2008), p. 409-412 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: In this study, the PLA plied yarn was fabricated by twisting four of PLA yarns together, then PLA plied yarn was used a 16-spindle braid machine to produce the PLA braids. PLA braids were immersed in the suspension of β-tricalcium phosphate (β-TCP), and heat treatment to improve the adhesion of β-TCP particles. PLA/β-TCP composite braids were immersed in simulated body fluid (SBF) to promote bonelike apatite production. The morphology of PLA braids were investigated by scanning electron microscopy (SEM), and the results shown that when twist coefficient was 3 of PLA plied yarn, the concentration of β-TCP suspension was 0.15 wt % and heat treatment at 175 °C for 9 min, we can obtain the optimal conditions of β-TCP particles adhesion
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 55-57 (Aug. 2008), p. 405-408 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: As available energy sources have grown increasingly scarce, people have started paying attention to their energy consumption. Although many methods for power generation are being actively investigated, efficient methods for solving energy problems must be based on reducing energy consumption. Thermal insulation can decrease heat energy loss and conserve energy waste, especially in the construction, transportation and industrial fields. In this study, polyester (PET) hollow fibers were blended with various ratios of low-melting-point PET fibers (10%, 20%, 30%, 40% and 50%). The fibers were blended using opening, carding, laying and needle punching (150 needles/cm2, 225 needles/cm2 and 300 needles/cm2) to prepare PET nonwoven fabrics. The PET nonwoven fabrics were thermally plate pressed (TPP) and air-through bonding (ATB). Thermal conductivity, physical properties and air permeability were investigated to identify the influence of manufacturing parameters on the PET nonwoven fabrics. The experimental results show that needle punching density, TPP and ATB would influence the thermal conductivity of PET nonwoven fabric, because the structure of PET nonwoven fabric was changed. The optimal parameters of PET nonwoven fabric clipped with an aluminum foil was used to evaluate the influence of aluminum foil on thermal conductivity. The PET nonwoven composite in this study can be used in industrial thermal insulation applications
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 55-57 (Aug. 2008), p. 417-420 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Nowadays, the development of science and technology are rapidly, relatively, wastes brought more and more problems. Because the waste produced by the textile production accounts for 5% of total rubbish quantity, so how to reduce the pollution of the selvage wastes and how to effective treatment waste is the present primary task in the course of developing. This research is mainly to use two layers of the 7.0d polyester (PET) nonwoven as the base cloth of the upper strata and lower strata, and the selvage wastes of the PP are layered between them. The polyester nonwoven and selvage wastes combine by needle punching and thermal bonding than the nonwoven/ selvage wastes compound fabrics are formed. By this production, we can reduce waste quantity of selvage to achieve the environmental protection purpose, and increase the strength of the compound fabric. The results show when the weight of base cloth is 150 g/m2, the content of selvage waste in the compound fabric is 10%, temperature of thermal bonding is 220 °C, the liner velocity of the thermal compress roll is 0.5 m/min and the density of needle punching is 400 needles/cm2, the compound fabric has best mechanical properties. The stab resistance and the application of the compound fabric in geotextile are evaluated by test according to ASTM D4632 and ASTM D4533 standard
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. ; Stafa-Zurich, Switzerland
    Advanced materials research Vol. 55-57 (Aug. 2008), p. 321-324 
    ISSN: 1662-8985
    Source: Scientific.Net: Materials Science & Technology / Trans Tech Publications Archiv 1984-2008
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Electrospinning is common used in manufacturing ultrafine fibers from a polymer solution. With a high specific surface area, high porosity and good biocompatibility, the elecrospun membranes have extensive applications as biomaterials such as tissue scaffolds and for drug delivery. Silk fibroins (SF), gelatin (G) both have good biocompatibility and are non-toxic. And in previous literature, gelatin nanofiber can be successfully prepared by electrospinning, which was dissolved in formic acid. Tencel, which is extracted from wood pulp, is biodegradable, has a smooth fiber structure, can protect wounds and is irritation-free. Consequently, SF, G and Tencel are widely used in biomedical applications, such as for wound dressings and scaffolds for tissue engineering and so on. In this study, we discussed the applications of different shapes of electrospun membrane such as film, web. After that, the electrospun membrane was combined with Tencel nonwoven to fabricate composite nonwoven. Electrospinning of SF/ G was performed using formic acid as the spinning solvent. Parameters, such as electrical field (15~11 kV), spinning distance (15~7 cm), and volume ratio of SF and G, were analyzed to investigate their effects on electrospinnability and morphology of nanofiber membranes. The morphology of electrospun SF/ G nanofibers was investigated by scanning electron microscopy (SEM). Analytical demonstrate that the optimal electrospinning condition was fibers with an average diameter of 200–300 nm
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...