ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-01-06
    Description: Peripheral T-cell lymphomas (PTCLs) are a heterogeneous group of non-Hodgkin lymphomas frequently associated with poor prognosis and for which genetic mechanisms of transformation remain incompletely understood. Using RNA sequencing and targeted sequencing, here we identify a recurrent in-frame deletion (VAV1 Δ778–786) generated by a focal deletion-driven alternative splicing mechanism as well as novel VAV1 gene fusions (VAV1-THAP4, VAV1-MYO1F, and VAV1-S100A7) in PTCL. Mechanistically these genetic lesions result in increased activation of VAV1 catalytic-dependent (MAPK, JNK) and non–catalytic-dependent (nuclear factor of activated T cells, NFAT) VAV1 effector pathways. These results support a driver oncogenic role for VAV1 signaling in the pathogenesis of PTCL.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-11-18
    Description: Abstract 773 Peripheral T-cell lymphomas (PTCLs) are rare and heterogeneous tumors whose biology is largely unknown. Interestingly, the commonest subtypes (i.e. PTCL not otherwise specified, NOS; angioimmunoblastic T-cell lymphoma, AITL; and anaplastic large cell lymphoma, ALCL) present on one hand few disease-specific molecular features and, on the other hand, several apparently common abnormalities. So far, no data are available regarding miRNA expression in these tumors. In order to identify miRNA deregulated in PTCLs, we performed an extensive miRNA profiling (by studying 379 targets on the TaqMan Array MicroRNA Cards) of 44 PTCLs (including 23 PTCLs/NOS, 12 ALCLs, and 9 AITLs) and 13 sample representative of normal T-cell sub-populations (CD4+ and CD8+, both resting and activated). In addition, for all these cases, gene expression profiles (GEPs) were generated by the Ilumina whole genome DASL-assay. TaqMan Quantitative-PCR (qPCR) was then used for validation. First, we found that PTCLs and normal T-cells could be easily distinguished based on their miRNA profile, by both unsupervised and supervised analysis. Specifically, the latter identified 91 miRNA differentially expressed in PTCLs vs. T-cells with a fold change ≥2 and a pvalue
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-11-29
    Description: In Philadelphia-positive (Ph+) Acute Lymphoblastic Leukemia (ALL) patients (pts), resistance to tyrosine kinase inhibitors (TKIs) is frequently associated with the selection of one or more mutations in the BCR-ABL1 kinase domain (KD). The swift emergence of mutant clones as early as during induction therapy supports the hypothesis that, at least in some cases, mutations may already be present at diagnosis. Next Generaton Sequencing (NGS) has been proposed as an alternative to Sanger sequencing (seq) for BCR-ABL1 KD mutation screening because of its greater sensitivity and accuracy, but no studies have so far evaluated its prospective use in Ph+ ALL. Between 2015 and 2018, we have used NGS in parallel to Sanger seq to analyze a consecutive series of 126 Ph+ ALL pts who were newly diagnosed (n=39) or who had relapsed/refractory disease (n=87) on TKI therapy. In 22 cases, both bone marrow and peripheral blood were analyzed and compared. NGS of ≈400bp amplicons generated by nested RT-PCR was performed on a Roche GS Junior (until April 2017) or on an Illumina MiSeq (from May 2017 on). Read alignment and variant calling (with a lower limit set to 3%) were done with the AmpSuite software (SmartSeq srl). When multiple mutations mapped within the same sequence reads, assessment of cis vs trans configuration was done correcting for the probability of PCR recombination. Three out of 39 (7.7%) de novo Ph+ ALL pts had low burden point mutations detectable by NGS: one had a V289A (variant frequency, 3.4%); one had a D276G (4.0%) and a F359V (3.5%); one had an E255K mutation (3.3%). The first pt was enrolled in the GIMEMA LAL1811 study of frontline ponatinib; the second and the third pts were enrolled in the GIMEMA D-ALBA study of frontline sequential treatment with dasatinib and blinatumomab. All pts achieved molecular remission, consistently with the mutations being sensitive to the TKIs received. The 35INS insertion/truncation mutant was detected in 27 (69%) pts, who all have so far achieved molecular remission. This is in line with the report by O'Hare et al (Blood 2011) suggesting that the 35INS variant is kinase-inactive and does not contribute to TKI resistance. For this reason, the 35INS was excluded from subsequent analyses. Relapsed/refractory pts positive for mutations by Sanger seq were 57 (65%); those positive for mutations by NGS were 69 (79%). Fifty-six out of 87 (49%) pts had 〉1 mutation (up to 13) detected by NGS. NGS identified low burden mutations (i.e., mutations present in a proportion of transcripts between 3 and 20%) in 12 pts who were negative for mutations by Sanger seq. Most importantly, NGS provided a more accurate picture of BCR-ABL1 mutations status in 40 (46%) pts who turned out to have one or more low burden mutations in addition to the dominant mutation(s) detectable by Sanger seq. In all cases, each low burden mutation detected by NGS could be recognized as poorly sensitive either to the TKI the pt was receiving at the time of testing, or to the previous TKI. The clonal nature of NGS-based analysis further proved its utility i) in 4 pts where Sanger seq had shown 2 base substitutions in the same codon so that the actual amino-acid change(s) were impossible to infer (a ponatinib-resistant pt with a T315M mutation, 2 dasatinib-resistant pts with various combinations of F317I, F317C and/or F1317L, a dasatinib-resistant pt with 2 different nucleotide substitutions both leading to the V299L), and ii) in 48/56 pts who had ≥2 mutations whose clonal configuration could not be resolved. Twenty-eight out of these 48 pts were found to carry one or more (up to 3) compound mutants. Compound mutants were more common in pts who had failed ≥2 lines of therapy, whereas polyclonality was more common in pts who had failed first line therapy. The most frequent compound mutants were T315I+E255K and T315I+E255V. Interestingly, the latter was associated with poor or no response to ponatinib. Our results in a relatively large series of Ph+ ALL pts suggest that an NGS-based approach provides a more accurate characterization of the complexity of BCR-ABL1 KD mutation status, including compound mutants some of whom may be poorly sensitive even to ponatinib. Mutations may already be detected at the time of diagnosis. It remains to be assessed whether more sensitive techniques like digital PCR may identify a greater number of pts with pre-therapy mutations and whether the detection of pre-therapy mutations may be used to guide 1st-line treatment selection. Disclosures Soverini: Incyte Biosciences: Consultancy; Bristol Myers Squibb: Consultancy; Novartis: Consultancy. Pagano:Gilead: Speakers Bureau; Basilea: Speakers Bureau; Merck: Speakers Bureau; Janssen: Speakers Bureau; Pfizer: Speakers Bureau. Abruzzese:Ariad: Consultancy; BMS: Consultancy; Novartis: Consultancy; Pfizer: Consultancy. Martinelli:Roche: Consultancy; Celgene: Consultancy, Speakers Bureau; Jazz Pharmaceuticals: Consultancy; Pfizer: Consultancy, Speakers Bureau; Novartis: Speakers Bureau; Abbvie: Consultancy; Janssen: Consultancy; Ariad/Incyte: Consultancy; Amgen: Consultancy. Cavo:Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; GlaxoSmithKline: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Honoraria, Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-04-11
    Description: Peripheral T-cell lymphoma (PTCL) is a group of complex clinicopathological entities, often associated with an aggressive clinical course. Angioimmunoblastic T-cell lymphoma (AITL) and PTCL-not otherwise specified (PTCL-NOS) are the 2 most frequent categories, accounting for 〉50% of PTCLs. Gene expression profiling (GEP) defined molecular signatures for AITL and delineated biological and prognostic subgroups within PTCL-NOS (PTCL-GATA3 and PTCL-TBX21). Genomic copy number (CN) analysis and targeted sequencing of these molecular subgroups revealed unique CN abnormalities (CNAs) and oncogenic pathways, indicating distinct oncogenic evolution. PTCL-GATA3 exhibited greater genomic complexity that was characterized by frequent loss or mutation of tumor suppressor genes targeting the CDKN2A/B-TP53 axis and PTEN-PI3K pathways. Co-occurring gains/amplifications of STAT3 and MYC occurred in PTCL-GATA3. Several CNAs, in particular loss of CDKN2A, exhibited prognostic significance in PTCL-NOS as a single entity and in the PTCL-GATA3 subgroup. The PTCL-TBX21 subgroup had fewer CNAs, primarily targeting cytotoxic effector genes, and was enriched in mutations of genes regulating DNA methylation. CNAs affecting metabolic processes regulating RNA/protein degradation and T-cell receptor signaling were common in both subgroups. AITL showed lower genomic complexity compared with other PTCL entities, with frequent co-occurring gains of chromosome 5 (chr5) and chr21 that were significantly associated with IDH2R172 mutation. CN losses were enriched in genes regulating PI3K–AKT–mTOR signaling in cases without IDH2 mutation. Overall, we demonstrated that novel GEP-defined PTCL subgroups likely evolve by distinct genetic pathways and provided biological rationale for therapies that may be investigated in future clinical trials.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-11-29
    Description: Next-Generation Sequencing (NGS)-based BCR-ABL1 kinase domain (KD) mutation screening has been shown to enable greater accuracy and sensitivity and straightforward identification of compound mutants (CM) as compared to Sanger sequencing (seq). However, the prevalence of CMs has never been assessed in prospective studies, and although in vitro data suggest that many of them may be challenging for all tyrosine kinase inhibitors (TKIs) including ponatinib, attempts to correlate such data with in vivo responses have never been made. To address these issues, we have reviewed the results of routine NGS-based BCR-ABL1 KD mutation screening performed over the past 3 years. Between 2015 and 2018, we have prospectively used NGS to analyze a consecutive series of 751 Ph+ leukemia patients (pts) on TKI therapy who were eligible for BCR-ABL1 KD mutation screening according to ELN/NCCN/ESMO recommendations. The study population included 664 chronic myeloid leukemia (CML) pts with failure or warning response (chronic phase [CP], n=593; accelerated or blastic phase [AP/BP], n=71) and 87 Ph+ acute lymphoblastic leukemia (ALL) pts with relapsed/refractory disease. NGS of ≈400bp amplicons generated by nested RT-PCR was performed on a Roche GS Junior (until April 2017) or on an Illumina MiSeq (from May 2017 on) using custom protocols whose accuracy, sensitivity and reproducibility was checked by national and international (EUTOS) control rounds. Read alignment and variant calling was done using the AmpSuite software (SmartSeq srl), with a lower detection limit set to 3%. Cis or trans configuration of mutation pairs, indicating CMs or polyclonality, respectively, was determined correcting for the likelihood of PCR recombination. The 35INS insertion/truncation mutant was excluded from the analysis. NGS identified mutations in the BCR-ABL1 KD in a total of 313/664 (47%) CML pts (255/593 [43%] CP-CML and 58/71 [82%] AP/BP-CML) and 69/87 (79%) Ph+ ALL pts. Ninety-one percent of the mutations could be recognized as conferring resistance to at least one TKI on the basis of publicly available IC50 data or published reports. In 42/593 (7%) CP-CML, 6/71 (8.5%) AP/BP-CML and 12/87 (14%) Ph+ ALL pts, low burden mutations (i.e., mutations carried by a proportion of transcripts 15% - hence detectable by Sanger seq). Fifty-five (9.2%) CP-CML, 51 (72%) AP/BP-CML and 56 (49%) Ph+ ALL pts had ≥2 mutations (CP-CML: 1-5 mutations; AP/BP-CML: 1-6 mutations; Ph+ ALL: 1-13 mutations). Identification of CMs in pts with ≥2 mutations was fully possible (i.e., all the candidate pairs mapped within a distance of 400bp) in 71% of cases and partially possible (i.e., some, but not all the candidate pairs mapped within a distance of 400bp) in another 12% of cases. A total of 86 CMs (85 double and 1 triple) in 73 pts (21 [3.5%] CP-CML, 23 [32%] AP/BP-CML and 29 [37%] Ph+ ALL pts) could be catalogued (Figure 1A). All but two (T315I+D276G, M244V+E255K) were detected in pts who had received ≥2 TKIs and all included at least a 2nd-generation TKI-resistant mutation. The most frequent CMs were T315I+E255K, T315I+E255V, T315I+F359V, F317L+Y253H (Figure 1A). The triple CM, detected in a ponatinib-resistant pt, was F317I+Y253F+Q252H. Correlation of IC50 data with in vivo responses (the TKIs pts were clinically resistant to) confirmed only partially in vitro predictions (Figure 1B). In particular, although ponatinib was shown in vitro to be poorly effective against several CMs, only the T315I+E255V was consistently found to be associated with ponatinib failure. In conclusion, our results in a large unselected series of TKI-resistant pts analyzed by NGS show that:CMs are relatively infrequent in CP-CML, but may be a relevant issue in AP/BP-CML and Ph+ ALL;among pts with multiple mutations, those who have failed 1 line of therapy have most often polyclonality, whereas those who have failed ≥2 lines of therapy may have CMs or polyclonality;in vitro predictions of sensitivity and insensitivity based on IC50 data should be regarded with caution. In particular, the only compound mutant that we consistently found to be associated with ponatinib failure was the T315I+E255V. Supported by EUTOS 2016. Disclosures Soverini: Novartis: Consultancy; Incyte Biosciences: Consultancy; Bristol Myers Squibb: Consultancy. Pagano:Pfizer: Speakers Bureau; Gilead: Speakers Bureau; Basilea: Speakers Bureau; Merck: Speakers Bureau; Janssen: Speakers Bureau. Gugliotta:Pfizer: Honoraria; Bristol-Myers Squibb: Honoraria; Incyte: Honoraria; Novartis: Honoraria. Castagnetti:Incyte: Consultancy, Honoraria; Pfizer: Consultancy, Honoraria; Bristol Meyers Squibb: Consultancy, Honoraria; Novartis: Consultancy, Honoraria. Angelucci:Roche Italy: Other: Local (national) advisory board; Novartis: Honoraria, Other: Chair Steering Comiittee TELESTO Protocol; Celgene: Honoraria, Other: Chair DMC; Jazz Pharmaceuticals Italy: Other: Local ( national) advisory board; Vertex Pharmaceuticals Incorporated (MA) and CRISPR CAS9 Therapeutics AG (CH): Other: Chair DMC. Martinelli:Abbvie: Consultancy; Ariad/Incyte: Consultancy; Janssen: Consultancy; Novartis: Speakers Bureau; Jazz Pharmaceuticals: Consultancy; Roche: Consultancy; Pfizer: Consultancy, Speakers Bureau; Celgene: Consultancy, Speakers Bureau; Amgen: Consultancy. Cavo:Janssen: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda: Honoraria, Membership on an entity's Board of Directors or advisory committees; Bristol-Myers Squibb: Honoraria, Membership on an entity's Board of Directors or advisory committees; Adaptive Biotechnologies: Honoraria, Membership on an entity's Board of Directors or advisory committees; Amgen: Honoraria, Membership on an entity's Board of Directors or advisory committees; AbbVie: Honoraria, Membership on an entity's Board of Directors or advisory committees; Celgene: Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; GlaxoSmithKline: Honoraria, Membership on an entity's Board of Directors or advisory committees.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-02-20
    Description: In chronic myeloid leukemia (CML) patients, tyrosine kinase inhibitors (TKIs) may select for drug-resistant BCR-ABL1 kinase domain (KD) mutants. Although Sanger sequencing (SS) is considered the gold standard for BCR-ABL1 KD mutation screening, next-generation sequencing (NGS) has recently been assessed in retrospective studies. We conducted a prospective, multicenter study (NEXT-in-CML) to assess the frequency and clinical relevance of low-level mutations and the feasibility, cost, and turnaround times of NGS-based BCR-ABL1 mutation screening in a routine setting. A series of 236 consecutive CML patients with failure (n = 124) or warning (n = 112) response to TKI therapy were analyzed in parallel by SS and NGS in 1 of 4 reference laboratories. Fifty-one patients (22 failure, 29 warning) who were negative for mutations by SS had low-level mutations detectable by NGS. Moreover, 29 (27 failure, 2 warning) of 60 patients who were positive for mutations by SS showed additional low-level mutations. Thus, mutations undetectable by SS were identified in 80 out of 236 patients (34%), of whom 42 (18% of the total) had low-level mutations somehow relevant for clinical decision making. Prospective monitoring of mutation kinetics demonstrated that TKI-resistant low-level mutations are invariably selected if the patients are not switched to another TKI or if they are switched to a inappropriate TKI or TKI dose. The NEXT-in-CML study provides for the first time robust demonstration of the clinical relevance of low-level mutations, supporting the incorporation of NGS-based BCR-ABL1 KD mutation screening results in the clinical decision algorithms.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-15
    Description: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare disease of controversial origin recently recognized as a neoplasm deriving from plasmacytoid dendritic cells (pDCs). Nevertheless, it remains an orphan tumor with obscure biology and dismal prognosis. In this study, we aimed to: 1) molecularly define the cellular counterpart of BPDCN and its relationship with other leukemias; 2) identify genes and cellular programs deregulated in the tumor; and 3) delineate novel potential therapeutic targets. To address these issues we collected and studied by gene expression profile (GEP) 27 BPDCN cases as well as 8 samples of non neoplastic pDCs. Further, a panel of samples including, myeloid precursors (MPs, N=4), lymphoid precursors (LPs, N=9), acute myeloid leukemias (AMLs, N=132), and acute lymphoblastic leukemias (ALLs, N=155) was analyzed. Validation was performed by immunohistochemistry (IHC) on tissue-microarrays, while functional experiments were carried out by using the CAL-1 cell line (derived from a BPDCN case). First, we recognized the cellular derivation of BPDCN, which proved to originate from the myeloid lineage and in particular from resting pDCs. Second, by comparing the GEP of BPDCN and resting pDCs, we identified genes and cellular programs deregulated in the tumor. Following, based on an integrated bio-informatic approach, including four different tools, we uncovered the aberrant activation of the NF-kB pathway that was confirmed in independent assays. Interestingly, among other molecules, we identified BCL2 and IRF4, two well known NFkB targets, as aberrantly upregulated in neoplastic samples and confirmed this observation by IHC. We then tested whether NFkB inhibition could represent a potential therapeutic strategy in this setting. We treated BPDCN cells ex vivowith either the proteasome inhibitor bortezomib or the selective IKKB inhibitor BMS-345541 and found them to be effective in inducing cell cycle arrest and apoptosis at relatively low dosage. By contrast, BPDCN cells turned out to be virtually insensitive to cytarabine, one of the most used drug in this condition. GEP and immunocytochemistry were then successfully used to prove that cell death was accompanied by NFkB shut-off. In conclusion, we identified a molecular signature representative of the transcriptional abnormalities of BPDCN and developed a cellular model proposing the first molecular targeted therapeutic approach in the setting of this currently incurable disease. Funding This work was supported by AIRC (IG10519 and 5xMille10007, Prof. Pileri), Centro Interdipartimentale per la Ricerca sul Cancro “G. Prodi”, BolognAIL, RFO (Prof. Pileri, Prof. Piccaluga), FIRB Futura 2011 RBFR12D1CB (Prof. Piccaluga), Fondazione Cassa di Risparmio in Bologna, Fondazione della Banca del Monte e Ravenna, Progetto Strategico di Ateneo 2006 (Prof. Pileri and Dr. Piccaluga) and by MIUR (PRIN 2011, Prof. Facchetti and Prof. Pileri). The authors have no conflicting financial interests to declare. Acknowledgments The Authors obtained the CAL-1 cell line from Takahiro Maeda (tmaeda@net.nagasaki-u.ac.jp), Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan. Disclosures: No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-12-02
    Description: Peripheral T-cell lymphomas (PTCL) are malignant and highly aggressive hematologic tumors arising from mature post thymic T-cells. The diagnosis of PTCL includes diverse lymphoma subgroups, altogether accounting for about 15% of all non-Hodgkin lymphomas. Despite much effort in developing reliable diagnostic markers, the diagnosis of PTCLs is challenging and 20-30% of cases are diagnosed as PTCL-NOS (not otherwise specified). This heterogeneous and poorly defined group of lymphomas is frequently characterized by chemotherapy resistance and a very poor prognosis. Here we report the presence of recurrent driver activating genetic alterations in the VAV1 gene in PTCL, NOS. RNA-seq analysis of a comprehensive series of 154 PTCLs and targeted sequencing identified VAV1 gene fusions with different partners including VAV1-THAP4, VAV1-MYO1F and VAV1-S100A7. In all cases the resulting oncoproteins lack the C-terminal SH3 domain of VAV1, a motif implicated in the negative regulation of VAV1 signaling, leading to increased activation of VAV1 catalytic-dependent (MAPK, JNK) and non-catalytic-dependent (NFAT) VAV1 effector pathways. In addition, and most notably, we also identified focal microdeletions at the VAV1 intron 25-exon 26 boundary, which result in the activation of an alternative intraexonic splice acceptor site and the consequent expression of mis-splicing-driven mutant transcripts harboring a recurrent VAV1 Δ778-786 in-frame deletion. Mechanistically, the VAV1 Δ778-786 mutation removes 9 amino acids proximal to the C-terminal VAV1 SH3 domain and induces in increased VAV1 activation and signaling in biochemical assays. In all, these results support a driver role for oncogenic VAV1 signaling in T-cell transformation of major importance for the design of targeted therapies for the treatment of PTCL, NOS. Disclosures No relevant conflicts of interest to declare.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-11-13
    Description: A variety of mechanisms underlie the lack or loss of response to TKIs in patients (pts) with CML, but acquisition of point mutations in the BCR-ABL1 KD is, at present, the only actionable one. Detection of a TKI-resistant mutation by Sanger Sequencing (seq) should trigger a change of therapy and, in some cases, guide TKI selection. Although research studies have shown that NGS may hold added value over Sanger seq for BCR-ABL1 KD mutation screening, routine NGS is technically demanding and expensive and is not yet widely available. Newer methods, like ddPCR, might represent an attractive alternative. Here we set out to 1) assess the actionability of results, hence the potential clinical benefit, of more sensitive NGS-based testing vs Sanger seq in a consecutive series of CML pts who had non-optimal response to TKI therapy according to the 2013 ELN recommendations, and 2) test a novel ddPCR-based multiplex assay for rapid screening for a panel of BCR-ABL1 KD mutations relevant for TKI selection. Between January 2015 and May 2019, samples from 712 CML pts followed at one of 66 GIMEMA CML Working Party hematology centers were referred to our laboratory for BCR-ABL1 KD mutation testing because of a Failure (n=251 pts) or Warning (n=461 pts) response to TKI therapy. In parallel to Sanger seq, NGS of amplicons generated by nested reverse transcription(RT)-PCR was performed on a Roche GS Junior instrument until April 2017, and on an Illumina MiSeq instrument from May 2017 on. Read alignment and variant calling was done using AmpSuite software (SmartSeq). Variants detected in
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-06
    Description: Background: The invention of Next Generation Sequencing (NGS) has spurred research into human diseases, especially in the field of malignancy. In acute myeloid leukemia (AML), a plethora of novel alterations have been identified, including mutations in epigenetic regulator genes (e.g. IDH1, IDH2, DNMT3A), genes coding for proteins of the cohesin complex (e.g. SMC1A, SMC3, STAG2) and spliceosome genes (e.g. SF3B1, U2AF1). Although the diagnostic and prognostic implications of many of these alterations are not yet clear, there is increasing evidence that several of them might have major implications for understanding the disease biology or for patient-treatment. Thus, there is increasing need to reliably detect these mutations in large patient groups in clinically relevant time-frames and at an affordable cost. Due to the large number of genes to be screened, amplicon-based NGS represents an attractive detection method. Although, several assays have been reported, integrating different numbers of genes, it is currently unclear whether they really allow reliable detection of alterations in a reproducible way. Here we report our results from a round robin comparison of the detection of known AML-variants using a highly multiplexed, single tube assay coamplifying a total of 568 amplicons covering 54 entire genes or hot spot gene regions involved in leukemia (TruSight Myeloid sequencing panel; Illumina), with respect to the sensitivity, reproducibility and quantitative accuracy. Material and Methods: Ten European laboratories routinely involved in molecular AML diagnostics participated in this study. All groups performed two sequencing runs, each containing 8 samples. These samples were centrally aliquoted and distributed, the analyses were done in a blinded fashion. Six out of the 8 samples on each run were derived from a set of 9 samples composed of DNA isolated from the blasts of 18 different newly diagnosed AML patients mixed at a 1:1 ratio, with 50 ng of DNA being used for the library preparation. Three of these 9 samples were analyzed in replicate in separate runs by each group. The remaining two samples were a commercial test DNA containing 10 known single nucleotide variants (SNV) or insertion/deletion (InDel) alterations with defined variant allele frequencies (VAF) between 4 and 25% and DNA derived from the OCI-AML3 AML cell line (mutant for DNMT3A and NPM1). Sequencing was performed on MiSeq NGS systems (Illumina) using 2x151 bp-runs. Sequencing data were analyzed by all laboratories using the VariantStudio software (Illumina), with the threshold for mutation calling set at 3%. Results: Analysis of data quality indicated that 85% of the samples met the predefined acceptance criteria (〉=95% amplicons with at least 500 reads/amplicon), the median coverage was 7379 reads/amplicon (range 0-47403 reads). Of the 9 mutations present in the positive control, 7 were called at least once in the two replicates by all labs, two mutations with a VAF of 5% were missed by 1 and 4 participants, respectively. Overall, the VAF calls for this sample showed a high level of accuracy across the participants (median coefficient of variation 5%, range 0-22.5%) as well as excellent intra- and inter-laboratory reproducibility (Fig.1). In total, the 9 primary leukemic samples contained 43 known variants in 19 genes, including all commonly mutated genes in AML, i.e. CEBPA, DNMT3A,RUNX1, NPM1, FLT3, WT1. For these samples, the sensitivity was 95.7%. Based on the entire data set (positive control and leukemic samples), the calculated sensitivity of the assay for known variants with an expected VAF〉=5% was 93.3%. The rate of non-calls was slightly higher for InDels (14/179; 7.8%) than for SNVs (25/407; 6.1%; P=.47). Two 57-bp long insertions in FLT3 exons 14/15 were not called, which is expected due to the specifications of the assay (max. detectable InDel length
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...