ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 18 (1994), S. 155-162 
    ISSN: 1432-0789
    Keywords: Grazing ; Semiarid soils ; Shrubland ; Grassland ; Microbial biomass ; Microbial respiration
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The major objectives of this study were to determine the influence of grazing on the soil microbial biomass and activity in semiarid grassland and shrubland areas and to quantify the canopy effect (the differences in soil microbial biomass and activities between soils under plant canopies and soils in the open between plants). We also quantified changes in microbial biomass and activity during seasonal transition from dry to moist conditions. Chronosequences of sites withdrawn from grazing for 0, 11, and 16 years were sampled in a grassland (Bouteloua spp.) area and a shrubland (Atriplex canescens) area on and near the Sevilleta National Wildlife Reguge in central New Mexico, USA. Samples were obtained from beneath the canopies of plants (Yucca glauca in the grassland and A. canescens in the shrubland) and from open soils; they were collected three times during the spring and summer of a single growing season. Organic C, soil microbial biomass C, and basal respiration rates (collectively called the “soil C triangle”) were measured. We also calculated the microbial: organic C ratio and the metabolic quotient (ratio of respiration to microbial C) as measures of soil organic C stability and turnover. Although we had hypothesized that individual values of the soil C triangle would increase and that the ratios would decrease with time since grazing, differences in microbial parameters between sites located along the chronosequences were generally not significant. Grazing did not have a consistion effect on organic C, microbial C, and basal respiration in our chronosequences. The microbial: organic C ratio and the metabolic quotient generally increased with time since grazing on the shrubland chronosequence. The microbial: organic C ratio decreased with time since grazing and the metabolic quotient increased with time since grazing on the grassland chronosequence. The canopy effect was observed at all sites in nearly all parameters including organic C, microbial C, basal respiration, the microbial: organic C ratio, and the metabolic quotient which were predominantly higher in soils under the canopies of plants than in the open at all sites. Microbial biomass and activity did not increase during the experiment, even though the availability of moisture increased dramatically. The canopy effects were approximately equal on the shrubland and grassland sites. The microbial: organic C ratios and the metabolic quotients were generally higher in the shrubland soils than in the grassland soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Numbers and activities of microorganisms were measured in the vadose zones of three arid and semiarid areas of the western United States, and the influence of water availability was determined. These low-moisture environments have vadose zones that are commonly hundreds of meters thick. The specific sampling locations chosen were on or near U.S. Department of Energy facilities: the Nevada Test Site (NTS), the Idaho National Engineering Laboratory (INEL), and the Hanford Site (HS) in southcentral Washington State. Most of the sampling locations were uncontaminated, but geologically representative of nearby locations with storage and/or leakage of waste compounds in the vadose zone. Lithologies of samples included volcanic tuff, basalt, glaciofluvial and fluvial sediments, and paleosols (buried soils). Samples were collected aseptically, either by drilling bore-holes (INEL and HS), or by excavation within tunnels (NTS) and outcrop faces (paleosols near the HS). Total numbers of microorganisms were counted using direct microscopy, and numbers of culturable microorganisms were determined using plate-count methods. Desiccation-tolerant microorganisms were quantified by plate counts performed after 24 h desiccation of the samples. Mineralization of 14C-labeled glucose and acetate was quantified in samples at their ambient moisture contents, in dried samples, and in moistened samples, to test the hypothesis that water limits microbial activities in vadose zones. Total numbers of microorganisms ranged from log 4.5 to 7.1 cells g-1 dry wt. Culturable counts ranged from log 〈2 to 6.7 CFU g-1 dry wt, with the highest densities occurring in paleosol (buried soil) samples. Culturable cells appeared to be desiccation-tolerant in nearly all samples that had detectable viable heterotrophs. Water limited mineralization in some, but not all samples, suggesting that an inorganic nutrient or other factor may limit microbial activities in some vadose zone environments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Microbial ecology 9 (1983), S. 7-13 
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Several models of microbial surface colonization have been devised to quantitate growth and attachment rates on surfaces. One of these, the surface growth rate equation, is based on the assumption that the number of microcolonies of a given size (Ci) reaches a constant value (Cmax) that is equal to the attachment rate (A) divided by the specific growth rate (Μ). In this study, a computer simulation was used to determine the time required to reach Cmax. It was shown that Ci approaches Cmax asymptotically. The time required is dependent solely upon the growth rate and size of microcolonies. The number of one-celled microcolonies reaches 95% of Cmax after 4.3 generations. At low growth rates, a relatively long incubation period is required. Alternate methods that shorten the incubation time are considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Microbial ecology 9 (1983), S. 1-6 
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A surface growth rate equation is derived which describes simultaneous growth and attachment during microbial surface colonization. The equation simplifies determination of attachment and growth rate, and does not require a computer program for solution. This rate equation gives the specific growth rate (Μ) as a function of the number of cells on the surface (N), the incubation period (t), and the number of colonies (Ci) containing either one cell, two cells, four cells, etc, as shown below. $$\mu = \frac{{\ln (\frac{N}{{C_i }} + 1)}}{t}$$ The attachment rate (A) is given by the following relationship: $$A = \mu C_i $$ The proposed colonization kinetics are compared with exponential growth kinetics using 3-dimensional computer plots. Colonization kinetics diverged most from exponential kinetics when the growth rate was low or the attachment rate was high. Using these kinetics, it is possible to isolate the effects of growth and attachment on microbial surface colonization.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1432-184X
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three unsaturated subsurface paleosols influenced by moisture recharge, including a highly developed calcic paleosol, were studied to investigate the microbiology of paleosols. Two near-surface paleosols, one impacted by moisture recharge and the other beyond the influence of recharge, were also sampled to directly assess the effect of moisture recharge on the activity and composition of the microbial community associated with paleosols. The highly developed paleosol had a higher population of culturable heterotrophs, a greater glucose mineralization potential, a higher microbial diversity based on colony morphology, and a more than 20-fold higher concentration of ATP than the two weakly developed paleosols. The recharged near-surface paleosol, as compared to the near-surface paleosol unaffected by recharge, had a lower population of culturable heterotrophs, smaller mineralization rate constant, and lower richness based on colony morphology. The recharged paleosols contained predominantly gram-negative isolates, whereas the paleosol unaffected by recharge contained predominantly gram-positive isolates. Storage at 4°C of subsurface and near-surface paleosol samples containing high water potential increased the population of culturable aerobic heterotrophs, decreased diversity in colony morphology, and increased first-order rate constants and decreased lag times for glucose mineralization. These results indicate that aerobic heterotrophs are present in deep vadose zone paleosols and that there is potential for stimulation of their in situ growth and activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1432-0991
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The osmoregulatory mechanisms of chemolithotrophs have not previously been investigated. We tested glutamic acid, proline, and betaine as potential osmorprotectants for the acidic chemolithotrophThiobacillus ferrooxidans. Salt stresses were imposed by NaCl, KCl, Na2SO4, and K2SO4 in separate experiments. Proline enhanced rates of iron oxidation in all saltstressed cultures, whereas betaine acted as an osmoprotectant only in sulfate-salt-stressed cultures and in cultures severely stressed by NaCl (0.3–0.4M). Glutamic acid inhibited iron oxidation in all cases.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2016-11-21
    Description: Subsurface lithoautotrophic microbial ecosystems (SLiMEs) under oligotrophic conditions are typically supported by H2. Methanogens and sulfate reducers, and the respective energy processes, are thought to be the dominant players and have been the research foci. Recent investigations showed that, in some deep, fluid-filled fractures in the Witwatersrand Basin, South Africa, methanogens contribute
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-01-01
    Print ISSN: 0047-2425
    Electronic ISSN: 1537-2537
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1994-07-01
    Print ISSN: 0047-2425
    Electronic ISSN: 1537-2537
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1995-05-01
    Print ISSN: 0047-2425
    Electronic ISSN: 1537-2537
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...