ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-03-14
    Description: The autosomal dominant hyper-IgE syndrome (HIES, 'Job's syndrome') is characterized by recurrent and often severe pulmonary infections, pneumatoceles, eczema, staphylococcal abscesses, mucocutaneous candidiasis, and abnormalities of bone and connective tissue. Mutations presumed to underlie HIES have recently been identified in stat3, the gene encoding STAT3 (signal transducer and activator of transcription 3) (refs 3, 4). Although impaired production of interferon-gamma and tumour-necrosis factor by T cells, diminished memory T-cell populations, decreased delayed-type-hypersensitivity responses and decreased in vitro lymphoproliferation in response to specific antigens have variably been described, specific immunological abnormalities that can explain the unique susceptibility to particular infections seen in HIES have not yet been defined. Here we show that interleukin (IL)-17 production by T cells is absent in HIES individuals. We observed that ex vivo T cells from subjects with HIES failed to produce IL-17, but not IL-2, tumour-necrosis factor or interferon-gamma, on mitogenic stimulation with staphylococcal enterotoxin B or on antigenic stimulation with Candida albicans or streptokinase. Purified naive T cells were unable to differentiate into IL-17-producing (T(H)17) T helper cells in vitro and had lower expression of retinoid-related orphan receptor (ROR)-gammat, which is consistent with a crucial role for STAT3 signalling in the generation of T(H)17 cells. T(H)17 cells have emerged as an important subset of helper T cells that are believed to be critical in the clearance of fungal and extracellular bacterial infections. Thus, our data suggest that the inability to produce T(H)17 cells is a mechanism underlying the susceptibility to the recurrent infections commonly seen in HIES.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864108/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2864108/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Milner, Joshua D -- Brenchley, Jason M -- Laurence, Arian -- Freeman, Alexandra F -- Hill, Brenna J -- Elias, Kevin M -- Kanno, Yuka -- Spalding, Christine -- Elloumi, Houda Z -- Paulson, Michelle L -- Davis, Joie -- Hsu, Amy -- Asher, Ava I -- O'Shea, John -- Holland, Steven M -- Paul, William E -- Douek, Daniel C -- Z99 AI999999/Intramural NIH HHS/ -- England -- Nature. 2008 Apr 10;452(7188):773-6. doi: 10.1038/nature06764. Epub 2008 Mar 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immunology, National Institutes of Health, Bethesda, Maryland 20892, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18337720" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Candida albicans/immunology ; *Cell Differentiation ; Child ; Child, Preschool ; Enterotoxins/immunology ; Female ; *Genes, Dominant ; Humans ; Interferon-gamma/biosynthesis/immunology ; Interleukin-17/*biosynthesis ; Interleukin-2/biosynthesis/immunology ; Job Syndrome/genetics/*immunology/metabolism/*pathology ; Male ; Middle Aged ; Streptokinase/metabolism ; T-Lymphocytes, Helper-Inducer/immunology/*metabolism/*pathology ; Tumor Necrosis Factor-alpha/biosynthesis/immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-30
    Description: The skin represents the primary interface between the host and the environment. This organ is also home to trillions of microorganisms that play an important role in tissue homeostasis and local immunity. Skin microbial communities are highly diverse and can be remodelled over time or in response to environmental challenges. How, in the context of this complexity, individual commensal microorganisms may differentially modulate skin immunity and the consequences of these responses for tissue physiology remains unclear. Here we show that defined commensals dominantly affect skin immunity and identify the cellular mediators involved in this specification. In particular, colonization with Staphylococcus epidermidis induces IL-17A(+) CD8(+) T cells that home to the epidermis, enhance innate barrier immunity and limit pathogen invasion. Commensal-specific T-cell responses result from the coordinated action of skin-resident dendritic cell subsets and are not associated with inflammation, revealing that tissue-resident cells are poised to sense and respond to alterations in microbial communities. This interaction may represent an evolutionary means by which the skin immune system uses fluctuating commensal signals to calibrate barrier immunity and provide heterologous protection against invasive pathogens. These findings reveal that the skin immune landscape is a highly dynamic environment that can be rapidly and specifically remodelled by encounters with defined commensals, findings that have profound implications for our understanding of tissue-specific immunity and pathologies.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667810/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4667810/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Naik, Shruti -- Bouladoux, Nicolas -- Linehan, Jonathan L -- Han, Seong-Ji -- Harrison, Oliver J -- Wilhelm, Christoph -- Conlan, Sean -- Himmelfarb, Sarah -- Byrd, Allyson L -- Deming, Clayton -- Quinones, Mariam -- Brenchley, Jason M -- Kong, Heidi H -- Tussiwand, Roxanne -- Murphy, Kenneth M -- Merad, Miriam -- Segre, Julia A -- Belkaid, Yasmine -- R01 CA173861/CA/NCI NIH HHS/ -- R01 CA190400/CA/NCI NIH HHS/ -- U01 AI095611/AI/NIAID NIH HHS/ -- Howard Hughes Medical Institute/ -- Intramural NIH HHS/ -- England -- Nature. 2015 Apr 2;520(7545):104-8. doi: 10.1038/nature14052. Epub 2015 Jan 5.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA. ; Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; 1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Mucosal Immunology Section, Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland 20892, USA [3] Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, Maryland 20892, USA. ; Bioinformatics and Computational Bioscience Branch, National Institute of Allergy and Infectious Diseases, NIH Bethesda, Maryland 20892, USA. ; 1] Immunity at Barrier Sites Initiative, National Institute of Allergy and Infectious Diseases, NIH, Bethesda 20892, USA [2] Immunopathogenesis Section, Laboratory of Molecular Microbiology, National Institute of Allergy and Infectious Diseases, NIH Bethesda, Maryland 20892, USA. ; Dermatology Branch, National Cancer Institute, NIH Bethesda, Maryland 20892, USA. ; Howard Hughes Medical Institute, Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri 63110, USA. ; Department of Oncological Sciences, Tisch Cancer Institute and Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25539086" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Antigens, Bacterial/immunology ; CD8-Positive T-Lymphocytes/cytology/*immunology ; Dendritic Cells/cytology/*immunology ; Humans ; Immunity, Innate/immunology ; Interleukin-17/immunology ; Langerhans Cells/cytology/immunology ; Mice ; Mice, Inbred BALB C ; Mice, Inbred C57BL ; Primates ; Skin/cytology/*immunology/*microbiology ; Staphylococcus epidermidis/immunology ; Symbiosis/*immunology
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...