ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 1195-1200 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Thomson scattering measurements of ne and Te in the divertor region of a Tokamak are reported. These data are used as input to boundary physics codes such as UEDGE and DEGAS and to benchmark the predictive capabilities of these codes. These measurements have also contributed to the characterization of tokamak disruptions. A Nd:YAG laser (20 Hz, 1 J, 15 ns, 1064 nm) is directed vertically through the lower divertor region of the DIII–D Tokamak. A custom, aspherical collection lens (f/6.8) images the laser beam from 1 to 21 cm above the target plates into eight spatial channels with 1.5 cm vertical and 0.3 cm radial resolution. Two-dimensional mapping of the divertor region is achieved by sweeping the divertor X-point location radially through the fixed laser beam location. Fiber optics carry the light to polychromators whose interference filters have been optimized for low Te measurements. Silicon avalanche photodiodes measure both the scattered and plasma background light. Temperatures and densities are typically in the range of 5–200 eV and 1–10×1019 m−3, respectively. Low temperatures, Te〈1 eV, and high densities, ne〉8×1020 m−3 have been observed in detached plasmas. Background light levels have not been a significant problem. Reduction of the laser stray light permits Rayleigh calibration. Because of access difficulties, no in-vessel vacuum alignment target could be used. Instead, an in situ laser alignment monitor provides alignment information for each laser pulse. Results are compared with Langmuir probe measurements where good agreement is found except for regions of high ne and low Te as measured by Thomson scattering. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 68 (1997), S. 708-708 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The first Thomson scattering measurements of ne and Te in the divertor region of a tokamak are reported. These data are used as input to boundary physics codes such as UEDGE and DEGAS and to benchmark the predictive capabilities of these codes. These measurements have also contributed to the characterization of tokamak disruptions. A Nd:YAG laser (20 Hz, 1 J, 15 ns, 1064 nm) is directed vertically through the lower divertor region of the DIII–D tokamak. A custom, aspherical collection lens (f/6.8) images the laser beam from 1 to 21 cm above the target plates into eight spatial channels with 1.5 cm vertical and 0.3 cm radial resolution. Two-dimensional mapping of the divertor region is achieved by sweeping the divertor X-point location radically through the fixed laser beam location. Fiber optics carry the light to polychromators whose interference filters have been optimized for low-Te measurements. Silicon avalanche photodiodes measure both the scattered and plasma background light. Temperatures and densities are typically in the range of 5–200 eV and 1–10×1019 m−3, respectively. Low temperatures, Te〈1 eV, and high densities, ne〉8×108 cm−3 have been observed in detached plasmas. Background light levels have not been a significant problem. Reduction of the laser stray light permits Rayleigh calibration. Because of access difficulties, no in-vessel vacuum alignment target could be used. Instead, an in situ laser alignment monitor provides alignment information for each laser pulse. Results are compared with Langmuir probe measurements where good agreement is found except for regions of high ne and low Te as measured by Thomson scattering. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 66 (1995), S. 490-492 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The DIII-D Thomson scattering diagnostic, operational since 1990, uses 8 Nd:YAG 20-Hz lasers to measure electron temperature and density profiles (40 spatial points) throughout the plasma discharge. Recent progress has enabled a new set of operating modes to better fulfill varying plasma physics requirements. Custom circuitry for laser control (programmable with 1 μs precision) has successfully replaced a previous scheme which used real-time 68030 software. Two new modes of operation have been demonstrated. Burst mode is useful to study a transient plasma event: a series of laser pulses are fired at a rate ≤10 kHz after an external asynchronous event trigger. Burst mode is also useful to synchronize the Thomson lasers with other systems, such as an asynchronous Michelson ECE diagnostic scanning near 40 Hz. Group mode allows a programmed set of lasers to fire simultaneously into the same (65 ns) data acquisition gate. Improved signal/noise then yields smaller statistical errors in the profile results. This provides profile data for lower density plasmas, such as those anticipated during fast wave current drive experiments. Plans for a new CCD-based laser alignment system for position monitoring and feedback control will also be presented. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 57 (1985), S. 806-815 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: An array of soft x-ray diodes has been used to obtain central nickel densities for discharges in the Doublet III tokamak, during operation with an inconel primary limiter, in which nickel L-line radiation dominated the diode signals. The nature of the diode signals is determined primarily by comparison with soft x-ray spectra. The contribution of the continuum portion of the spectra to the central diode signal can be calculated and compared to the observed signal. When the diode signal is dominated by nickel L-line emission, the observed signal is considerably larger than the calculated continuum contribution. Chordal data from the array of diodes are inverted to provide the spatial profile of soft x-ray emission. Because the diodes are absolute detectors of radiation, the soft x-ray emission profile is used to obtain the absolute nickel concentration and density profile in the center of the plasma. A computer code, including over 100 nickel L-line transitions, has been developed to obtain the nickel density. The nickel L-line cooling rate, calculated with the code, is presented. The nickel density obtained by this technique agrees well with that obtained from the Kα line intensity measured with a soft x-ray spectrometer and that obtained from a bolometric measurement of central radiated power coupled with a coronal equilibrium model of the radiation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: This paper describes the design and operation of a 40 spatial channel Thomson scattering system that uses multiple 20-Hz Nd:YAG lasers to measure the electron temperature and density profiles periodically throughout an entire plasma discharge. As many as eight lasers may be fired alternately for an average measurement frequency of 160 Hz, or they may be fired in rapid succession (〈10 kHz), producing a burst of pulses for measuring transient events. The high spatial resolution (1.3 cm) and wide dynamic range (10 eV–20 keV) enable this system to resolve large electron density and temperature gradients formed at the plasma edge and in the scrape-off layer during H-mode operation. These features provide a formidable tool for studying L–H transitions, edge localized modes (ELMs), beta limits, transport, and disruptions in an efficient manner suitable for large tokamak operation where shot-to-shot scans are impractical. The scattered light is dispersed by interference filter polychromators and detected by silicon avalanche photodiodes. Laser control and data acquisition are performed in real time by a VME-based microcomputer. Data analysis is performed by a MicroVAX 3400. Additional features of this system include real-time analysis capability, full statistical treatment of error bars based on the measured background light, and laser beam quality and alignment monitoring during plasma operation. Results of component testing, calibration, plasma operation, and error analysis are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Significant progress has been made in obtaining high-performance discharges for many energy confinement times in the DIII-D tokamak [J. L. Luxon et al., Plasma Physics and Controlled Fusion Research (International Atomic Energy Agency, Vienna, 1987), Vol. I, p. 159]. Normalized performance (measured by the product of βNH89 and indicative of the proximity to both conventional β limits and energy confinement quality, respectively) ∼10 has been sustained for 〉5 τE with qmin〉1.5. These edge localized modes (ELMing) H-mode discharges have β∼5%, which is limited by the onset of resistive wall modes slightly above the ideal no-wall n=1 limit, with approximately 75% of the current driven noninductively. The remaining Ohmic current is localized near the half-radius. The DIII-D electron cyclotron heating system is being upgraded to replace this inductively driven current with localized electron cyclotron current drive (ECCD). Density control, which is required for effective ECCD, has been successfully demonstrated in long-pulse high-performance ELMing H-mode discharges with βNH89∼7 for up to 6.3 s. In plasma shapes compatible with good density control in the present divertor configuration, the achieved βN is somewhat less than that in the high βNH89=10 discharges. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1089-7674
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Detailed measurements in two dimensions by probes and Thomson scattering reveal unexpected local electric potential and electron pressure (pe) maxima near the divertor X point in L-mode plasmas in the DIII-D tokamak [J. L. Luxon and L. G. Davis, Fusion Technol. 8, 441 (1985)]. The potential drives E×B circulation about the X point, thereby exchanging plasma between closed and open magnetic surfaces at rates that can be comparable to the total cross-separatrix transport. The potential is consistent with the classical parallel Ohm's law. A simple model is proposed to explain the pressure and potential hills in low power, nearly detached plasmas. Recent two-dimensional edge transport modeling with plasma drifts also shows X-point pressure and potential hills but by a different mechanism. These experimental and theoretical results demonstrate that low power tokamak plasmas can be far from poloidal uniformity in a boundary layer just inside the separatrix. Additional data, although preliminary and incomplete, suggest that E×B circulation across the separatrix might be a common feature of low confinement behavior. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: A VME-based real-time computer system for laser control, data acquisition, and analysis for the DIII-D multipulse Thomson scattering diagnostic is described. The laser control task requires precise timing of up to eight Nd:YAG lasers, each with an average firing rate of 20 Hz. A cpu module in a real-time multiprocessing computer system will operate the lasers with evenly staggered laser pulses or in a "burst mode,'' where all available (fully charged) lasers can be fired at 50–100 μs intervals upon receipt of an external event trigger signal. One or more cpu modules, along with a LeCroy FERA (fast encoding and readout ADC) system, will perform real-time data acquisition and analysis. Partial electron temperature and density profiles will be available for plasma feedback control within 1 ms following each laser pulse. The VME-based computer system consists of two or more target processor modules (25 MHz Motorola 68030) running the VMEexec real-time operating system connected to a Unix-based host system (also a 68030). All real-time software is fully interrupt driven to maximize system efficiency. Operator interaction and (non-real-time) data analysis takes place on a MicroVAX 3400 connected via DECnet.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1089-7666
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Accurate equilibrium reconstruction and detailed stability analysis of a strongly shaped, double-null, βT=11% discharge shows that the plasma core is in the second stable regime to ideal ballooning modes. The equilibrium reconstruction using all the available data (coil currents, poloidal magnetic loops, motional Stark effect data, the kinetic pressure profile, the magnetic axis location, and the location of the two q=1 surfaces) shows a region of negative magnetic shear near the magnetic axis, an outer positive shear region, and a low shear region connecting the two. The inner negative shear region allows a large positive shear region near the boundary, even at low q (q95=2.6), permitting a large outer region pressure gradient to be first regime stable. The inner region is in the second stable regime, consistent with the observed axial beta [βT(0)=44%]. In the low shear region p' vanishes, consistent with Mercier stability. This is one way to extend the ballooning limit in shaped plasmas while maintaining stability against external kinks. The n=1 analysis shows that the plasma is unstable to an ideal internal mode, consistent with the experimental observations of a saturated internal m/n=1/1 mode. The core plasma pressure, not being limited by ballooning stability, appears to be reaching a local equilibrium limit at the magnetic axis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Review of Scientific Instruments 59 (1988), S. 1467-1469 
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The multipoint Thomson scattering diagnostic for DIII-D has been in operation since early 1987. Its capability of measuring electron temperatures as low as 50 eV at densities of a few times 1012 cm−3 and a spatial resolution of 1.4 cm in the plasma edge region has been essential in the study of H-mode plasmas. The major components of the diagnostic system consist of a 10-J ruby laser, many stages of funnel-shaped beam baffles, stacks of razor blades for viewing and stray light dumps, two wide-angle lenses for the collection of scattered light through reentrant window ports with protection shutters, 88 fiber bundles 15 m in length for light transmission to an f/1.9 spectrometer, an intensified CCD camera system capable of single-photon detection, and a VAX computer for hardware control and data processing. The input end of the fiber bundle is made demountable so the view locations can be reconfigured to optimize the spatial resolution for the plasma region of interest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...