ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-10-27
    Description: Questions related to historical and future water resources and scarcity have been addressed by several macroscale hydrological models. One of these models is the Variable Infiltration Capacity (VIC) model. However, further model developments were needed to holistically assess anthropogenic impacts on global water resources using VIC. Our study developed VIC-WUR, which extends the VIC model using (1) integrated routing, (2) surface and groundwater use for various sectors (irrigation, domestic, industrial, energy, and livestock), (3) environmental flow requirements for both surface and groundwater systems, and (4) dam operation. Global gridded datasets on sectoral demands were developed separately and used as an input for the VIC-WUR model. Simulated national water withdrawals were in line with reported Food and Agriculture Organization (FAO) national annual withdrawals (adjusted R2 〉 0.8), both per sector and per source. However, trends in time for domestic and industrial water withdrawal were mixed compared with previous studies. Gravity Recovery and Climate Experiment (GRACE) monthly terrestrial water storage anomalies were well represented (global mean root-mean-squared error, RMSE, values of 1.9 and 3.5 mm for annual and interannual anomalies respectively), whereas groundwater depletion trends were overestimated. The implemented anthropogenic impact modules increased simulated streamflow performance for 370 of the 462 anthropogenically impacted Global Runoff Data Centre (GRDC) monitoring stations, mostly due to the effects of reservoir operation. An assessment of environmental flow requirements indicates that global water withdrawals have to be severely limited (by 39 %) to protect aquatic ecosystems, especially with respect to groundwater withdrawals. VIC-WUR has potential for studying the impacts of climate change and anthropogenic developments on current and future water resources and sector-specific water scarcity. The additions presented here make the VIC model more suited for fully integrated worldwide water resource assessments.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-11-02
    Print ISSN: 0899-8418
    Electronic ISSN: 1097-0088
    Topics: Geosciences , Physics
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-01-22
    Description: This paper uses hindcasts (1981–2010) to investigate the sources of skill in seasonal hydrological forecasts for Europe. The hindcasts were produced with WUSHP (Wageningen University Seamless Hydrological Prediction system). Skill was identified in a companion paper. In WUSHP, hydrological processes are simulated by running the Variable Infiltration Capacity (VIC) hydrological model forced with an ensemble of bias-corrected output from the seasonal forecast system 4 (S4) of the European Centre for Medium-Range Weather Forecasts (ECMWF). We first analysed the meteorological forcing. The precipitation forecasts contain considerable skill for the first lead month but hardly any significant skill at longer lead times. Seasonal forecasts of temperature have more skill. Skill in summer temperature is related to climate change and is more or less independent of lead time. Skill in February and March is unrelated to climate change. Different sources of skill in hydro-meteorological variables were isolated with a suite of specific hydrological hindcasts akin to ensemble streamflow prediction (ESP). These hindcasts show that in Europe, initial conditions of soil moisture (SM) form the dominant source of skill in run-off. From April to July, initial conditions of snow contribute significantly to the skill. Some remarkable skill features are due to indirect effects, i.e. skill due to forcing or initial conditions of snow and soil moisture at an earlier stage is stored in the hydrological state (snow and/or soil moisture) of a later stage, which then contributes to persistence of skill. Skill in evapotranspiration (ET) originates mostly in the meteorological forcing. For run-off we also compared the full hindcasts (with S4 forcing) with two types of ESP (or ESP-like) hindcasts (with identical forcing for all years). Beyond the second lead month, the full hindcasts are less skilful than the ESP (or ESP-like) hindcasts, because inter-annual variations in the S4 forcing consist mainly of noise which enhances degradation of the skill.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-28
    Description: Seasonal predictions of river flow can be exploited among others to optimise hydropower energy generation, navigability of rivers and irrigation management to decrease crop yield losses. This paper is the first of two papers dealing with a physical model-based system built to produce probabilistic seasonal hydrological forecasts, applied here to Europe. This paper presents the development of the system and the evaluation of its skill. The variable infiltration capacity (VIC) hydrological model is forced with bias-corrected output of ECMWF's seasonal forecast system 4. For the assessment of skill, we analysed hindcasts (1981–2010) against a reference run, in which VIC was forced by gridded meteorological observations. The reference run was also used to generate initial hydrological conditions for the hindcasts. The skill in run-off and discharge hindcasts is analysed with monthly temporal resolution, up to 7 months of lead time, for the entire annual cycle. Using the reference run output as pseudo-observations and taking the correlation coefficient as metric, hot spots of significant theoretical skill in discharge and run-off were identified in Fennoscandia (from January to October), the southern part of the Mediterranean (from June to August), Poland, northern Germany, Romania and Bulgaria (mainly from November to January), western France (from December to May) and the eastern side of Great Britain (January to April). Generally, the skill decreases with increasing lead time, except in spring in regions with snow-rich winters. In some areas some skill persists even at the longest lead times (7 months). Theoretical skill was compared to actual skill as determined with real discharge observations from 747 stations. Actual skill is generally substantially less than theoretical skill. This effect is stronger for small basins than for large basins. Qualitatively, the use of different skill metrics (correlation coefficient; relative operating characteristics, ROC, area; and ranked probability skill score, RPSS) leads to broadly similar spatio-temporal patterns of skill, but the level of skill decreases, and the area of skill shrinks, in the following order: correlation coefficient; ROC area below-normal (BN) tercile; ROC area above-normal (AN) tercile; ranked probability skill score; and, finally, ROC near-normal (NN) tercile.
    Print ISSN: 1027-5606
    Electronic ISSN: 1607-7938
    Topics: Geography , Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...