ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 89 (2001), S. 1907-1914 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The temperature, pressure, and stress conditions in the diamond anvil cell sample chamber before, during, and after laser heating are mapped by employing standard materials as in situ pressure markers. Unit cell volumes of Pt, MgO, and NaCl were monitored by synchrotron-based x-ray diffraction at temperatures between 300 and 2290 K and pressures ranging from 14 to 53 GPa. To aid in interpreting the resulting pressure–volume–temperature paths, we perform a series of model calculations of the high-temperature, high-pressure x-ray diffraction behavior of platinum subjected to a general stress state. Thermal pressure and thermal expansion effects within the laser-heated volume are observed but are not sufficient to fully explain the measured paths. Large apparent pressure changes can also result from relaxation of deviatoric stresses during heating and partial reintroduction of those stresses during quench. Deviatoric stresses, monitored from both diffraction peak widths and lattice parameter shifts as a function of (hkl), may significantly distort equation of state results if it is assumed that the sample is under hydrostatic pressure. Large-scale, nearly isothermal pressure relaxation events are observed at ∼2000 K. It is proposed that these arise from relaxation of heated components (pressure medium, gasket, cell itself) outside of the directly laser-heated volume. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 86 (1999), S. 6729-6736 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Lattice strains were measured as a function of the angle ψ between the diffracting plane normal and the stress axis of a diamond anvil cell in a layered sample of molybdenum and gold. The sample was compressed over the range 5–24 GPa and the lattice strains were measured using energy-dispersive x-ray diffraction. As ψ is varied from 0° to 90°, the mean lattice parameter of molybdenum increases by up to 1.2% and that of gold increases by up to 0.7%. A linear relationship between Q(hkl), which is related to the slope of the measured d spacing versus 1−3 cos2 ψ relation, and 3Γ(hkl), a function of the Miller indices of the diffracting plane, is observed for both materials as predicted by theory. The pressure dependence of the uniaxial stress t for gold from this and other recent studies is given by t=0.06+0.015P, where P is the pressure in GPa. The uniaxial stress in molybdenum can be described by t=0.46+0.13P. Using gold as an internal pressure standard, the equation of state of molybdenum depends strongly on ψ. The bulk modulus obtained from a Birch–Murnaghan fit varies from 210 to 348 GPa as ψ varies from 0° to 90°. However, an equation of state in good agreement with shock and ultrasonic isotherms is obtained for ψ=54.7° where the deviatoric contribution to the lattice strain vanishes. Second-order elastic moduli for gold and molybdenum are obtained from the data. The results are generally consistent with an earlier x-ray study and with extrapolations of low-pressure ultrasonic data. The pressure dependence of the shear modulus C44 is smaller for the x-ray data than predicted by extrapolation of ultrasonic data. © 1999 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 76 (1994), S. 835-842 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Wave profile measurements are reported for pure molybdenum initially heated to 1400 °C and shock compressed to stresses between 12 and 81 GPa. The Hugoniot states are consistent with previous results and all data can be described by the parameters: c0=4.78(2) km/s and s=1.42(2), where the numbers in parentheses are one standard deviation uncertainties in the last digits. The amplitude of the Hugoniot elastic limit is 1.5–1.7 GPa at 1400 °C compared with 25 °C values of 2.3–2.8 GPa. Unloading wave velocities range from 6.30(22) km/s at 12.0 GPa to 7.91(24) km/s at 80.7 GPa and are 4%–8% below extrapolated ultrasonic values and Hugoniot measurements from a room temperature initial state. These differences can be explained by the effect of temperature on the compressional elastic wave velocity. No temperature dependence of the dynamic tensile strength can be resolved from the present data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 82 (1997), S. 4259-4269 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Wave profiles were measured in an Fe–Cr–Ni alloy (stainless steel 304) shock compressed to Hugoniot stresses between 7 and 80 GPa. A single-stage propellant gun was used to generate shock states and time histories were recorded by velocity interferometry. The particle velocity measurements are generally consistent with impedance match calculations to ±2%. Unloading wave velocities were obtained from analysis of the release wave profiles. Using Eulerian finite strain theory and under the assumption of fully elastic initial release, the first and second pressure derivatives of the longitudinal modulus are given by: 7.9(0.5) and −0.16(0.06) GPa−1, where the numbers in parentheses are one standard deviation uncertainties. The first and second pressure derivatives of the adiabatic bulk modulus are: 6.4(1.0) and −0.17(0.08) GPa−1. The unloading wave velocities are generally consistent with extrapolated trends from low-pressure ultrasonic data as well as with higher stress shock measurements on an alloy of similar composition. From 1 bar to 80 GPa, Poisson's ratio, ν, increases with Hugoniot stress, σ (in GPa), according to the relation: ν=0.29 + 0.0008σ. The Hugoniot elastic limit of 304 steel was found to be 0.35(0.12) GPa, and the initial yield stress is 0.21(0.07) GPa. The elastic precursor velocity was 5.8(0.1) km/s. Numerical simulations of the wave profiles using a constitutive model that incorporates a Bauschinger effect and stress relaxation reproduced the main features observed in the profiles. Release adiabats were also calculated from the measured wave profiles. The shear stress at unloading was determined to vary with stress according to the relation: τ0+τc=0.149+0.018σ, where σ is given in GPa. © 1997 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Geophysical journal international 120 (1995), S. 0 
    ISSN: 1365-246X
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Geosciences
    Notes: New equation of state data for a weathered granite shocked to about 125 GPa are reported and combined with the Westerly granite data of McQueen, Marsh & Fritz (1967). The shock velocity (Us)-particle velocity (Up) relations can be fitted with two linear regressions: Us= 4.40 + 0.6Up for a range of Up up to about 2 km s-1 and Us= 2.66 + 1.49Up for a range of about 2 to 5 km s-1. The third-order Birch-Murnaghan equation of state parameters are Kos= 51-57 GPa and K'os= 1.4-1.8 for the low-pressure regime and Kos= 251 ± 30 GPa and an assumed K'os= 4 for the high-pressure regime. Compressive waveforms in dry and water-saturated granite were measured at 10-15 GPa using the VISAR technique. The measured wave profiles were successfully modelled using a Maxwellian stress-relaxation material model. Water-saturated granite is characterized by a ˜25 per cent lower yield strength and a ˜75 per cent longer material relaxation time than dry granite.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    [s.l.] : Macmillian Magazines Ltd.
    Nature 411 (2001), S. 571-574 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The 660-km seismic discontinuity in the Earth's mantle has long been identified with the transformation of (Mg,Fe)2SiO4 from γ-spinel (ringwoodite) to (Mg,Fe)SiO3-perovskite and (Mg,Fe)O-magnesiowüstite. This has been based on experimental studies of ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 430 (2004), S. 409-410 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] The lowermost 250 km or so of Earth's mantle, known for historical reasons as D″, is comparatively small in volume but potentially holds the key to understanding a host of geophysical phenomena — among them the formation of plumes in the mantle, interactions between core and mantle, and ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    [s.l.] : Nature Publishing Group
    Nature 378 (1995), S. 170-173 
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] FIG. 1 Elastic moduli of single-crystal forsterite at 295 K as a function of pressure. Solid symbols with error bars (2a) are present data. The root-mean-square misfit between the measured velocities and those calculated from the best-fitting elastic moduli is typically 0.6%. Additional scatter in ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Physics and chemistry of minerals 22 (1995), S. 277-281 
    ISSN: 1432-2021
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences , Physics
    Notes: Abstract Single-crystal brucite, Mg(OH)2, was studied to 14 GPa in a quasi-hydrostatic pressure medium using a diamond anvil cell and energy-dispersive synchrotron x-ray diffraction. The parameters of a third-order Birch-Murnaghan equation of state fit to the data are: K OT=42(2) GPa, and (∂K OT/∂P)T= 5.7(5). The bulk modulus is significantly lower than that obtained in recent shock compression and powder x-ray diffraction experiments under non-hydrostatic conditions. No evidence was found for a transition involving the Mg -O sub-structure over the pressure range of these experiments. This implies that the structural change previously identified at high pressure by Raman spectroscopy probably involves rearrangement of hydrogen atoms, leaving the Mg — O substructure largely unaffected.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-10
    Description: Neighborite, NaMgF3, is used as a model system for understanding phase transitions in ABX3 systems (e.g., MgSiO3) at high pressures. Here we report diamond anvil cell experiments that identify the following phases in NaMgF3 with compression to 162 GPa: NaMgF3 (perovskite) → NaMgF3 (post-perovskite) → NaMgF3 (Sb2S3-type) → NaF (B2-type) + NaMg2F5 (P21/c) → NaF (B2) + MgF2 (cotunnite-type). Our results demonstrate the existence of an Sb2S3-type post-post-perovskite ABX3 phase. We also experimentally demonstrate the formation of the P21/c AB2X5 phase which has been proposed theoretically to be a common high-pressure phase in ABX3 systems. Our study provides an experimental observation of the full sequence of phase transitions from perovskite to post-perovskite to post-post-perovskite followed by 2-stage breakdown to binary compounds. Notably, a similar sequence of transitions is predicted to occur in MgSiO3 at ultrahigh pressures, where it has implications for the mineralogy and dynamics in the deep interior of large, rocky extrasolar planets.
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...