ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2011-06-01
    Description: A commercial femtosecond laser system operating at its fundamental wavelength ({lambda} = 800 nm, near Infra-Red) was used to ablate both synthetic and natural quartz on polished and unpolished surfaces. Ablation rates and maximum depths were determined using two distinct optical setups: a 25 mm focal length Cassegrain reflecting objective, and a 50 mm focal length convergent coated lens. All samples were ablated with the same laser beam at E0 = 1 mJ, {tau} = 60 fs, f = 5 Hz and N = 10-8000 shots. The depth of ablation craters obtained with the lens shows a linear increase with shot number N up to N = 2000 shots. Then the depth increases much less with N and reaches a plateau above N = 3000 shots. Maximum depth was close to 1300 {micro}m for N = 3000 shots. Using the reflecting objective, ablation rate starts from 0.42 {micro}m/shot and decreases rapidly to 0.02 {micro}m/shot at a maximum depth of 350 {micro}m for N =1500 shots. Ablation thresholds (Fth) were calculated for 1 and 10 consecutive shots with energy increasing from E0 = 0.1-2 mJ/pulse. Threshold values varies from Fth=0.1 J.cm-2 (unpolished, 10 shots) to Fth = 2.9 J.cm-2 (polished, single shot). The energy penetration of IR-femtosecond laser pulses in quartz has been calculated at l = 271 nm. The low absorption of IR wavelengths in quartz affects the ablation efficiency in the first shots. The associated non-linear effects are visible on a crater FIB foil observed with TEM as progressive high-pressure photomechanical damage developing under the ablation pit. The present study emphasizes the potential of IR-femtosecond laser for ablation of highly transparent material, and provides reliable data for LA-ICP-MS applications in earth sciences.
    Print ISSN: 0935-1221
    Electronic ISSN: 1617-4011
    Topics: Geosciences
    Published by Schweizerbart
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...