ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1520-4995
    Source: ACS Legacy Archives
    Topics: Biology , Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 54 (2004), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: IS30 is the founding member of a large family of widely spread bacterial insertion sequences with closely related transposases. The N-terminal end of the IS30 transposase had been shown to retain sequence-specific DNA binding activity and to protect the IS30 terminal inverted repeats. Structural predictions revealed the presence of a helix–helix–turn–helix motif (H–HTH2) which, in the case of IS30, is preceded by an additional helix–turn–helix motif (HTH1). Analysis of deletion and point mutants in this region revealed that both motifs are important for IS30 transposition. IS30 exhibits two types of insertion specificity preferring either a 24 bp palindromic hot-spot (GOHS) or sequences resembling its ends [left and right terminal inverted repeat (IRL and IRR)]. Results are presented suggesting that the HTH1 region is required for GOHS targeting and interferes with the inverted repeat (IR) targeting. On the other hand, H–HTH2 appears to be required for both. The binding activities of the mutant proteins to the terminal IS30 IRs as measured by gel retardation correlated well with these results. Furthermore, close inspection of the H–HTH2 region revealed significant amino acid identity with a similar predicted secondary structure carried by the transcriptional regulator FixJ of Sinorhizobium meliloti and involved in FixJ binding to its target sequence. This suggests that FixJ and IS30 transposase share similar sequence-specific DNA binding mechanisms.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 197 (1972), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 51 (2004), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 25 (1997), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: It is shown here that the bacterial insertion sequence IS911 exhibits a temperature-sensitive transposition phenotype. Previous results have demonstrated that elevated levels of the IS911 transposase OrfAB generate significant quantities of a figure-eight form, created by cleavage and circularization of one of the transposon strands, and of an excised circular form, in which both transposon strands have been circularized. We show here that the level of both types of molecule observed in vivo was greatly reduced at 42°C compared with 37°C. On the other hand, reducing the temperature to 30°C resulted in a significant increase in production. Transposition activity at this temperature was sufficiently high to permit detection in vivo of an excised circular form of a defective single IS911 chromosomal copy when OrfAB is supplied in trans. A similar temperature–activity profile is observed for a cell-free reaction that uses partially purified OrfAB and generates the figure-eight form uniquely. Moreover, two point mutants of OrfAB were obtained, which render the reactions partially temperature resistant both in vivo and in vitro. These results suggest that some property of transposase itself is sensitive to elevated temperatures.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 7 (1993), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The expression of an increasing number of genes of both prokaryotic and eukaryotic origin has been shown to be regulated at the translational level by programmed (sequence-specific) ribosomal frame-shifting. Among these are the bacterial insertion sequences IS1 and two members of the widely distributed IS3-family, IS150 and IS911. Frameshifting provides a means of specifying several proteins with different functions using a minimum of genetic information. In this review, we survey present understanding of the way in which frameshifting is integrated into the overall control of transposition activity in these elements.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 53 (2004), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The IS1 bacterial insertion sequence family, considered to be restricted to Enterobacteria, has now been extended to other Eubacteria and to Archaebacteria, reviving interest in its study. To analyse the functional domains of the InsAB′ transposase of IS1A, a representative of this family, we used an in vivo system which measures IS1-promoted rescue of a temperature-sensitive pSC101 plasmid by fusion with a pBR322::IS1 derivative. We also describe the partial purification of the IS1 transposase and the development of several in vitro assays for transposase activity. These included a DNA band shift assay, a transposase-mediated cleavage assay and an integration assay.  Alignments  of  IS  family  members  () not only confirmed the presence of an N-terminal helix–turn–helix and a C-terminal DDE motif in InsAB′, but also revealed a putative N-terminal zinc finger. We have combined the in vitro and in vivo tests to carry out a functional analysis of InsAB′ using a series of site-directed InsAB′ mutants based on these alignments. The results demonstrate that appropriate mutations in the zinc finger and helix–turn–helix motifs result in loss of binding activity to the ends of IS1 whereas mutations in the DDE domain are affected in subsequent transposition steps but not in end binding.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 51 (2004), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: A simplified system using bacterial insertion sequence IS911 has been developed to investigate targeted insertion next to DNA sequences resembling IS ends. We show here that these IR-targeted events occur by an unusual mechanism. In the circular IS911 transposition intermediate the two IRs are abutted to form an IR/IR junction. IR-targeted insertion involves transfer of a single end of the junction to the target IR to generate a branched DNA structure. The single-end transfer (SET) intermediate, but not the final insertion product, can be detected in an in vitro reaction. SET intermediates must be processed by the bacterial host to obtain the final insertion products. Sequence analysis of these IR-targeted insertion products and of those obtained in vivo revealed high levels of DNA sequence conversion in which mutations from one IR were transferred to another. These sequence changes cannot be explained by the classic transposition pathway. A model is presented in which the four-way Holliday-like junction created by SET is processed by host-mediated branch migration, resolution, repair and replication. This pathway resembles those described for processing other branched DNA structures such as stalled replication forks.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Molecular microbiology 53 (2004), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Insertion of bacterial insertion sequence IS911 can often be directed to sequences resembling its ends. We have investigated this type of transposition and shown that it can occur via cleavage of a single end and its targeted transfer next to another end. The single end transfer (SET) events generate branched DNA molecules that contain a nicked Holliday junction and can be considered as partial transposition products. Our results indicate that these can be processed by the Escherichia coli host independently of IS911-encoded proteins. Such resolution depends on the presence of homologous DNA regions neighbouring the cross-over point in the SET molecule. Processing is often accompanied by sequence conversion between donor and target sequences, suggesting that branch migration is involved. We show that resolution is greatly reduced in a recG host. Thus, the branched DNA-specific helicase, RecG, involved in processing of potentially lethal DNA structures such as stalled replication forks, also intervenes in the resolution of partial IS911 transposition products.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...