ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 65 (1989), S. 1754-1758 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Modified lead titanate/polymer 1–3 composites are fabricated and their resonance characteristics determined. The mode coupling theory is applied to the pillar-shaped ceramic elements inside the 1–3 composite. Coupling of lateral and thickness mode vibrations occurs as the width to thickness ratio increases. The experimental results agree well with the mode coupling theory predictions. It is found that the piezoelectric properties of PbTiO3/epoxy composites are similar to that of lead zirconate titanate (PZT)/epoxy composites, except that the coupling constants of lead titanate are very small due to ceramic anisotropy. The thickness mode resonant frequency times the thickness value, fH, stays steady and close to the uncoupled value as the configurational (width/thickness) L/H ratio is increased from 0.1 to 1.0. In the range L/H=1.0–1.5, the thickness and lateral mode vibrations couple. Above L/H=1.5, these modes decouple and are easily resolved. The thickness mode becomes again close to the uncoupled value. Lead titanate/epoxy composites geometries can therefore be selected with L/H〉1.5. This produces better medical ultrasonic transducers than PZT/epoxy types.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The reaction-bonded aluminum oxide (RBAO) process is an attractive alternative to the conventional processing of Al2O3-based ceramics. The most attractive features of the process are the high strengths, densities, and easy machinability of the green powder compacts, and the low shrinkage and high strengths of the sintered ceramics. These advantages result from the presence of aluminum in the green bodies and are enhanced further with increasing aluminum contents. However, it is apparent that ZrO2-containing RBAO powders with higher aluminum contents (〉45 vol%) are increasingly more difficult to densify, as the start of densification is delayed (shifted to higher temperatures) and the densification rates are decreased. Ultimately, this results in a decrease in the limiting density to which the RBAO ceramic may be sintered. In this study, the cooperative effects of ZrO2 and aluminum contents on the sintering of RBAO ceramics are discussed in terms of densification behavior and microstructural analysis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Inc
    Journal of the American Ceramic Society 88 (2005), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The changes in the structure and optical properties of indium tin oxide (ITO) thin films that were subjected to water electrolysis using an alternating current power source were investigated. X-ray diffraction indicated that the film was reduced to metallic indium after the treatment. Scanning electron microscopy revealed that the film became porous after the treatment. These structural changes had led to a dramatic degradation in the optical properties of ITO. The electrochemical mechanism responsible for the changes was discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The influence of additions of excess PbO to Pb(Mg1/3Nb2/3)O3–35 mol% PbTiO3 (PMN–35PT) on {111} single-crystal growth by seeded polycrystal conversion was studied in the range of 0–5 vol% PbO. PbO volatilization and hence weight loss during annealing was controlled effectively by a double-crucible type of arrangement. PbO additions increased boundary mobility significantly in PMN–35PT, thus facilitating single-crystal growth by seeded polycrystal conversion (SPC). This is attributed to the formation of a boundary wetting PbO-based liquid phase. The growth process occurs very rapidly initially, after which it slows down. This is presumably due to both a decrease in the driving force for boundary migration because of an increase in matrix grain size, and a transition to lower mobility facets. It is also shown that for a given annealing time, the size of the grown crystal scales with the lateral dimensions of the seed crystal.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Pb[(Mg1/3Nb2/3)0.65Ti0.35]O3 (PMN–35PT) powder was prepared using the columbite precursor method. Fully dense compacts were formed by hot-pressing the powder at 950°C, and then the compacts were annealed at 1150°C for 5 and 10 h, respectively. Dielectric and piezoelectric properties of the as-hot-pressed and annealed samples were measured and correlated with microstructure. The as-hot-pressed material exhibited relaxor–ferroelectric-like behavior, with a relatively low dielectric constant maximum measured at 1 kHz (Km@1kHz) of 8160. Annealing resulted in a transition to weak normal-ferroelectric behavior, a shift in the dielectric maximum temperature from 190°C to 169°C, and a dramatic increase of Km@1kHz to a maximum value of 41 720 for the longer anneal. The as-hot-pressed microstructure was chemically heterogeneous, characterized by submicrometer-sized regions of varying magnesium, niobium, and titanium content that likely originated from chemical heterogeneities that were present in the as-prepared PMN-PT powder. The as-hot-pressed properties have been explained as being the integrated response of many discrete ferroelectric responses as dictated for each of these regions by the local chemistry. The transition on annealing has been explained in terms of chemical homogenization to a near-morphotropic phase-boundary composition that is intrinsically weak normal-ferroelectric. Differences in polarization-versus-electric-field and strain-versus-electric-field behavior between the hot-pressed and annealed materials have been discussed in terms of differences in domain mobility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Water-induced degradation in ZnO-based ceramic varistors is reported. A comparison experiment was conducted in which some varistors were immersed in a 0.05M NaOH solution for some time while other varistors were placed in a 0.05M NaOH solution to evolve hydrogen on their silver electrode by electrolysis of water. No degradation occurred to those samples that were immersed in the NaOH solution; the leakage currents increased by orders of magnitude and the switch voltage remained unchanged in the samples treated by electrolysis of water. These results indicate that the degradation resulted from the reduction reaction of hydrogen atoms generated by electrolysis of water rather than the permeation of water into the ceramics. Because water can be formed on varistors by condensation of aqueous vapor in air and varistors are usually operated under electric fields, it is proposed that the reduction reaction of hydrogen atoms generated by electrolysis of water may be an important origin for the degradation in ZnO varistors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 85 (2002), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: X-ray absorption near-edge structure (XANES) depends on stereochemical features of coordination polyhedra around probe atoms. K-edge XANES of Y and Zr segregated in alumina grain boundaries has been obtained and analyzed using metallic Y and Zr, Y2O3, YAG, and monoclinic ZrO2 as standards. Grain-boundary-segregated Y and Zr show a positive chemical shift, and the magnitude of the shift, as compared with that of Y2O3 and ZrO2, respectively, is different for Y and Zr, indicating that, relative to Y2O3 and ZrO2, charge transfers for the grain-boundary-segregated Y and Zr are different. This result is also supported by the strength of the threshold resonance. A pre-edge shoulder is seen in K-edge XANES for grain-boundary-segregated Y and Zr but not for Y2O3 and ZrO2. This shoulder is attributed to the 1s→ 4d transition, which is normally forbidden, but can occur because of d–p mixing, which is favored by a tetrahedral coordination configuration. These results suggest that some of the grain-boundary-segregated Y and Zr have coordination configurations with a well-defined tetrahedral symmetry. The XANES results are compared with those obtained from EXAFS. Implications of these results for understanding of the enhanced creep resistance in alumina are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 81 (1998), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The crack healing and strength behavior of an alumina-silicon carbide (Al2O3-SiC) nanocomposite (Al2O3+ 5 vol% 0.2 μm SiC particles) has been studied, as a function of the crack size and the annealing environment. Results show that annealing treatments can significantly increase the indentation strength. The annealing atmosphere has a profound influence on the extent of crack healing and the degree of strength recovery. Annealing in argon results in a strength increase of 50%, whereas annealing in air yields a three-fold improvement in the indentation strength. Scanning electron microscopic observation has shown that healing of indentation cracks occurs in both environments, with the greater degree of healing occurring during annealing in air. Implications of the findings to the strengthening mechanism in Al2O3 (SiC) nanocomposites will be discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 80 (1997), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Mullite and mullite/ZrO2 ceramics were fabricated starting from Si/Al2O3 and Si/Al2O3/ZrO2 powder mixtures, which were mixed and attrition milled with TZP balls in water. Isopressed powder compacts were subjected to a heat treatment in air, during which the Si was oxidized to SiO2. At } 1410°C, reaction between Al2O3 and SiO2 occurred, resulting in mullite (3Al2O3·2SiO2). Depending on the composition of the starting powders, the end product was either single-phase mullite or a mullite composite. The reaction process was monitored by thermogravimetry and dilatometry. It was found that the microstructure and mechanical properties of the reaction-formed mullite ceramics were significantly improved by ZrO2 additions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Westerville, Ohio : American Ceramics Society
    Journal of the American Ceramic Society 80 (1997), S. 0 
    ISSN: 1551-2916
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: The tensile creep behavior of two rare-earth dopant systems, lanthanum- and yttrium-doped alumina, are compared and contrasted in order to better understand the role of oversized, isovalent cation dopants in determining creep behavior. It was found that, despite some microstructural differences, these systems displayed qualitatively a similar improvement in creep resistance, supporting the hypothesis that creep is strongly influenced by segregation. Differences in primary creep behavior and activation energy for steady-state creep were, however, observed for these systems. Given these results, it is expected that creep behavior can be further optimized by adjusting the dopant level and by controlling the microstructure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...