ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15789 | 8 | 2014-12-04 20:17:57 | 15789
    Publication Date: 2021-07-10
    Description: EXTRACT (SEE PDF FOR FULL ABSTRACT):The effects of gradual climate change (ie, multi-decadal) on biological communities are not well understood for most natural systems, owing principally to the lack of quantitative observations in early studies. ... We resurveyed invertebrate species on an intertidal transect in central California, first established and surveyed in 1931, to assess shifts in community structure.
    Keywords: Atmospheric Sciences ; Ecology ; Oceanography ; PACLIM
    Repository Name: AquaDocs
    Type: conference_item
    Format: application/pdf
    Format: application/pdf
    Format: 129-129
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-05-25
    Description: Author Posting. © The Authors, 2009. This is the author's version of the work. It is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Global Change Biology 15 (2009): 2078-2088, doi:10.1111/j.1365-2486.2008.01822.x.
    Description: Sequestration of carbon dioxide (CO2) in the ocean is being considered as a feasible mechanism to mitigate the alarming rate in its atmospheric rise. Little is known, however, about how the resulting hypercapnia and ocean acidification may affect marine fauna. In an effort to understand better the protistan reaction to such an environmental perturbation, the survivorship of benthic foraminifera, which is a prevalent group of protists, was studied in response to deep-sea CO2 release. The survival response of calcareous, agglutinated, and thecate foraminifera was determined in two experiments at ~3.1 and 3.3 km water depth in Monterey Bay (California, USA). Approximately five weeks after initial seafloor CO2 release, in situ incubations of the live-dead indicator CellTracker Green were executed within seafloor-emplaced pushcores. Experimental treatments included direct exposure to CO2 hydrate, two levels of lesser exposure adjacent to CO2 hydrate, and controls, which were far removed from the CO2 hydrate release. Results indicate that survivorship rates of agglutinated and thecate foraminifera were not significantly impacted by direct exposure but the survivorship of calcareous foraminifera was significantly lower in direct exposure treatments compared to controls. Observations suggest that, if large scale CO2 sequestration is enacted on the deep-sea floor, survival of two major groups of this prevalent protistan taxon will likely not be severely impacted, while calcareous foraminifera will face considerable challenges to maintain their benthic populations in areas directly exposed to CO2 hydrate.
    Description: This work was funded by the Monterey Bay Aquarium Research Institute (project 200002; to JPB), US Department of Energy grant # DE-FG02-03ER63696 (to J. P. Kennett and J.M.B.), and NSF OCE-0725966 (to J.M.B.).
    Keywords: Carbon dioxide sequestration ; CO2 injection ; Climate change ; Foraminifera ; Experiment ; Hypercapnia ; Meiofauna ; Monterey Bay ; Ocean acidification ; Protist
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2010. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part I: Oceanographic Research Papers 57 (2010): 696-707, doi:10.1016/j.dsr.2010.03.003.
    Description: One proposed approach to ameliorate the effects of global warming is sequestration of the greenhouse gas CO2 in the deep sea. To evaluate the environmental impact of this approach, we exposed the sediment-dwelling fauna at the mouth of the Monterey Submarine Canyon (3262 m) and a site on the nearby continental rise (3607 m) to CO2- rich water. We measured meiobenthic nematode population and community metrics after ~30-day exposures along a distance gradient from the CO2 source and with sediment depth to infer the patterns of mortality. We also compared the nematode response with that of harpacticoid copepods. Nematode abundance, average sediment depth, tail-group composition, and length: width ratio did not vary with distance from the CO2 source. However, quantile regression showed that nematode length and diameter increased in close proximity to the CO2 source in both experiments. Further, the effects of CO2 exposure and sediment depth (nematodes became more slender at one site, but larger at the other, with increasing depth in the sediment) varied with body size. For example, the response of the longest nematodes differed from those of average length. We propose that nematode body length and diameter increases were induced by lethal exposure to CO2-rich water and that nematodes experienced a high rate of mortality in both experiments. In contrast, copepods experienced high mortality rates in only one experiment suggesting that CO2 sequestration effects are taxon specific.
    Description: The Department of Energy Office of Biological and Environmental Research supported this research under award numbers DE‐FG02‐05ER64070 and DE‐FG03‐01ER63065 and the U.S. Department of Energy, Fossil Energy Group (award DE‐FC26‐00NT40929). We also appreciate significant support provided by the Monterey Bay Aquarium Research Institute (project 200002).
    Keywords: Carbon dioxide ; Nematode body size and shape ; Sediment vertical profile ; Monterey Canyon ; Quantile regression
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 34 (2007): L18608, doi:10.1029/2006GL027288.
    Keywords: Carbon dioxide ; Acidification ; Ocean pH
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2022-05-25
    Description: © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Biogeosciences 11 (2014): 6955-6967, doi:10.5194/bg-11-6955-2014.
    Description: This study aims to evaluate the potential for impacts of ocean acidification on North Atlantic deep-sea ecosystems in response to IPCC AR5 Representative Concentration Pathways (RCPs). Deep-sea biota is likely highly vulnerable to changes in seawater chemistry and sensitive to moderate excursions in pH. Here we show, from seven fully coupled Earth system models, that for three out of four RCPs over 17% of the seafloor area below 500 m depth in the North Atlantic sector will experience pH reductions exceeding −0.2 units by 2100. Increased stratification in response to climate change partially alleviates the impact of ocean acidification on deep benthic environments. We report on major pH reductions over the deep North Atlantic seafloor (depth 〉500 m) and at important deep-sea features, such as seamounts and canyons. By 2100, and under the high CO2 scenario RCP8.5, pH reductions exceeding −0.2 (−0.3) units are projected in close to 23% (~15%) of North Atlantic deep-sea canyons and ~8% (3%) of seamounts – including seamounts proposed as sites of marine protected areas. The spatial pattern of impacts reflects the depth of the pH perturbation and does not scale linearly with atmospheric CO2 concentration. Impacts may cause negative changes of the same magnitude or exceeding the current target of 10% of preservation of marine biomes set by the convention on biological diversity, implying that ocean acidification may offset benefits from conservation/management strategies relying on the regulation of resource exploitation.
    Description: This work was supported through EU FP7 projects EPOCA (grant no. 211384) and CARBOCHANGE (grant no. 264879). D. O. B. Jones was funded by the UK Natural Environment Research Council as part of the Marine Environmental Mapping Programme (MAREMAP). S. C. Doney acknowledges support from the National Science Foundation (AGS-1048827). F. Joos acknowledges support from the Swiss National Science Foundation.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/20837 | 12051 | 2016-07-05 15:41:26 | 20837 | Institute of Oceanography, Nha Trang, Viet Nam
    Publication Date: 2021-07-12
    Description: The important sedimentation of the Bay of Cam-Ranh rivers Suȏi Hai, Truong Suȏi, Suȏi Ca, Suȏi Tra Duc, Sȏng Can, Sȏng Trau from the Annamite Chain, provides hydrophilic vegetation (mangroves and swampy meadows) with a favorable habitat.
    Description: Reprinted as: Institut Océanographique de Nha Trang Vietnam, Contribution, nr 49
    Keywords: Biology ; Ecology ; rivers ; vegetation ; terrigenous sediments ; habitat ; Cam-Ranh Bay ; Vietnam
    Repository Name: AquaDocs
    Type: article
    Format: application/pdf
    Format: application/pdf
    Format: 129-140
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/20838 | 12051 | 2016-07-05 15:42:36 | 20838 | Institute of Oceanography, Nha Trang, Viet Nam
    Publication Date: 2021-07-12
    Description: The 1:50000 Vegetation Map of Cam Ranh Peninsula is one of the first study performed in South Vietnam; it aims to locate various vegetation on coastal sands and it represents a synthesis of phytogeographic observations. (Barry J.P. and Phung Trung Ngan, 1960, Barry J. P., Le-Cȏng-Kiet Hoang and Pham-Hȏ, 1961 Barry J. P., Le-Cȏng-Kiet and Vu-Van Cuong, 1961).
    Description: Reprinted as: Institut Océanographique de Nha Trang Vietnam, Contribution, nr 50
    Keywords: Ecology ; coastal zone ; vegetation ; phytogeography ; habitat ; Cam-Ranh Bay ; Nhatrang ; Vietnam
    Repository Name: AquaDocs
    Type: article
    Format: application/pdf
    Format: application/pdf
    Format: 141-154
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/20851 | 12051 | 2016-07-05 15:44:06 | 20851 | Institute of Oceanography, Nha Trang, Viet Nam
    Publication Date: 2021-07-12
    Description: The natural vegetation on the coastal sands of Central and Southern Vietnam seems to not be in relation with the chemical composition of the sands, but with the age of sediments.
    Description: Reprinted as: Institut Océanographique de Nha Trang Vietnam, Contribution, nr 52
    Keywords: Biology ; Ecology ; natural vegetation ; coastal zone ; Cam-Ranh Bay ; Nhatrang ; Vietnam
    Repository Name: AquaDocs
    Type: article
    Format: application/pdf
    Format: application/pdf
    Format: 101-128
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-26
    Description: Dataset: HMS 5m Hydrography
    Description: oxygen, pH, depth, and conductivity measured at 5 m depth at Hopkins Marine Station from 18-April 2013 to 14-June 2013. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/707023
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1416877
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1432-2056
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary During the austral summer of 1975–76 and winter of 1977 benthic and water column chlorophyll a and phaeopigments were measured at several sites along the east and west sides of McMurdo Sound, Antarctica. Estimates of in situ primary productivity were made at some McMurdo Sound locations. Additionally, water column samples were collected at 5 stations in the Ross Sea during January, 1976. Standing stock data are analyzed to identify seasonal and spatial patterns. Variability in algal standing stock was related to ambient light levels and appeared to be mediated by ice and snow cover whereby the highest algal standing stock was present under high light conditions (low ice and snow cover, shallow water, summer). Differences in published benthic invertebrate densities appear to be closely allied to differences in benthic primary production, and less so to in situ planktonic ice microalgal production.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...