ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1991-12-20
    Description: Dimerization among transcription factors has become a recurrent theme in the regulation of eukaryotic gene expression. Hepatocyte nuclear factor-1 alpha (HNF-1 alpha) is a homeodomain-containing protein that functions as a dimer. A dimerization cofactor of HNF-1 alpha (DCoH) was identified that displayed a restricted tissue distribution and did not bind to DNA, but, rather, selectively stabilized HNF-1 alpha dimers. The formation of a stable tetrameric DCoH-HNF-1 alpha complex, which required the dimerization domain of HNF-1 alpha, did not change the DNA binding characteristics of HNF-1 alpha, but enhanced its transcriptional activity. However, DCoH did not confer transcriptional activation to the GAL4 DNA binding domain. These results indicate that DCoH regulates formation of transcriptionally active tetrameric complexes and may contribute to the developmental specificity of the complex.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Mendel, D B -- Khavari, P A -- Conley, P B -- Graves, M K -- Hansen, L P -- Admon, A -- Crabtree, G R -- CA 09302/CA/NCI NIH HHS/ -- HD 07201/HD/NICHD NIH HHS/ -- HL 33942/HL/NHLBI NIH HHS/ -- etc. -- New York, N.Y. -- Science. 1991 Dec 20;254(5039):1762-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Stanford University, CA 94305.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/1763325" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Cell Nucleus/physiology ; Chromosome Deletion ; DNA-Binding Proteins/*metabolism ; Gene Library ; Hepatocyte Nuclear Factor 1 ; Hepatocyte Nuclear Factor 1-alpha ; Hepatocyte Nuclear Factor 1-beta ; Humans ; *Hydro-Lyases ; Liver/physiology ; Macromolecular Substances ; Mice ; Molecular Sequence Data ; *Nuclear Proteins ; Protein Biosynthesis ; RNA, Messenger/genetics ; Rabbits ; Rats ; Reticulocytes/metabolism ; Transcription Factors/genetics/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 1994-12-23
    Description: RNA polymerase I and II transcription factors SL1 and TFIID, respectively, are composed of the TATA-binding protein (TBP) and a set of TBP-associated factors (TAFs) responsible for promoter recognition. How the universal transcription factor TBP becomes committed to a TFIID or SL1 complex has not been known. Complementary DNAs encoding each of the three TAFIs that are integral components of SL1 have not been isolated. Analysis of subunit interactions indicated that the three TAFIs can bind individually and specifically to TBP. In addition, these TAFIs interact with each other to form a stable TBP-TAF complex. When TBP was bound first by either TAFI110, 63, or 48, subunits of TFIID such as TAFII250 and 150 did not bind TBP. Conversely, if TBP first formed a complex with TAFII250 or 150, the subunits of SL1 did not bind TBP. These results suggest that a mutually exclusive binding specificity for TBP intrinsic to SL1 and TFIID subunits directs the formation of promoter- and RNA polymerase-selective TBP-TAF complexes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Comai, L -- Zomerdijk, J C -- Beckmann, H -- Zhou, S -- Admon, A -- Tjian, R -- New York, N.Y. -- Science. 1994 Dec 23;266(5193):1966-72.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Molecular and Cell Biology, University of California at Berkeley 94720-3204.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/7801123" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Base Sequence ; Binding, Competitive ; Cloning, Molecular ; DNA, Complementary/genetics ; DNA-Binding Proteins/chemistry/genetics/isolation & purification/*metabolism ; HeLa Cells ; Humans ; Molecular Sequence Data ; *Pol1 Transcription Initiation Complex Proteins ; Promoter Regions, Genetic ; Protein Binding ; RNA Polymerase I/metabolism ; TATA Box ; *TATA-Binding Protein Associated Factors ; TATA-Box Binding Protein ; Transcription Factor TFIID ; Transcription Factors/chemistry/genetics/isolation & purification/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 1993-11-26
    Description: Phosphatidylinositol (PtdIns) 4-kinase catalyzes the first step in the biosynthesis of PtdIns-4,5-bisphosphate (PtdIns[4,5]P2). Hydrolysis of PtdIns[4,5]P2 in response to extracellular stimuli is thought to initiate intracellular signaling cascades that modulate cell proliferation and differentiation. The PIK1 gene encoding a PtdIns 4-kinase from the yeast Saccharomyces cerevisiae was isolated by polymerase chain reaction (PCR) with oligonucleotides based on the sequence of peptides derived from the purified enzyme. The sequence of the PIK1 gene product bears similarities to that of PtdIns 3-kinases from mammals (p110) and yeast (Vps34p). Expression of PIK1 from a multicopy plasmid elevated PtdIns 4-kinase activity and enhanced the response to mating pheromone. A pik1 null mutant was inviable, indicating that PtdIns4P and presumably PtdIns[4,5]P2 are indispensable phospholipids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Flanagan, C A -- Schnieders, E A -- Emerick, A W -- Kunisawa, R -- Admon, A -- Thorner, J -- CA09041/CA/NCI NIH HHS/ -- GM07232/GM/NIGMS NIH HHS/ -- GM21841/GM/NIGMS NIH HHS/ -- New York, N.Y. -- Science. 1993 Nov 26;262(5138):1444-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular and Cell Biology, University of California, Berkeley 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8248783" target="_blank"〉PubMed〈/a〉
    Keywords: 1-Phosphatidylinositol 4-Kinase ; Amino Acid Sequence ; Cloning, Molecular ; Gene Expression ; *Genes, Fungal ; Molecular Sequence Data ; Molecular Weight ; Mutation ; Phosphatidylinositol 4,5-Diphosphate ; Phosphatidylinositol Phosphates/metabolism ; Phosphotransferases (Alcohol Group Acceptor)/biosynthesis/chemistry/*genetics ; Polymerase Chain Reaction ; Saccharomyces cerevisiae/enzymology/*genetics/growth & development ; *Saccharomyces cerevisiae Proteins
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1987-12-04
    Description: Nuclear oncogene products have the potential to induce alterations in gene regulation leading to the genesis of cancer. The biochemical mechanisms by which nuclear oncoproteins act remain unknown. Recently, an oncogene, v-jun, was found to share homology with the DNA binding domain of a yeast transcription factor, GCN4. Furthermore, GCN4 and the phorbol ester-inducible enhancer binding protein, AP-1, recognize very similar DNA sequences. The human proto-oncogene c-jun has now been isolated, and the deduced amino acid sequence indicates more than 80 percent identity with v-jun. Expression of cloned c-jun in bacteria produced a protein with sequence-specific DNA binding properties identical to AP-1. Antibodies raised against two distinct peptides derived from v-jun reacted specifically with human AP-1. In addition, partial amino acid sequence of purified AP-1 revealed tryptic peptides in common with the c-jun protein. The structural and functional similarities between the c-jun product and the enhancer binding protein suggest that AP-1 may be encoded by c-jun. These findings demonstrate that the proto-oncogene product of c-jun interacts directly with specific target DNA sequences to regulate gene expression, and therefore it may now be possible to identify genes under the control of c-jun that affect cell growth and neoplasia.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bohmann, D -- Bos, T J -- Admon, A -- Nishimura, T -- Vogt, P K -- Tjian, R -- CA25417/CA/NCI NIH HHS/ -- CA42564/CA/NCI NIH HHS/ -- New York, N.Y. -- Science. 1987 Dec 4;238(4832):1386-92.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Department of Biochemistry, University of California, Berkeley, CA 94720.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2825349" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Antibodies/immunology ; Avian Sarcoma Viruses/genetics ; Base Sequence ; Cross Reactions ; DNA/genetics ; DNA-Binding Proteins/genetics/immunology/*physiology ; Enhancer Elements, Genetic ; Fungal Proteins/genetics ; Gene Expression Regulation ; Genes, Viral ; Humans ; Molecular Sequence Data ; Oncogene Protein p65(gag-jun) ; Oncogenes ; *Protein Kinases ; Proto-Oncogene Proteins/genetics/immunology/*physiology ; Proto-Oncogene Proteins c-jun ; *Proto-Oncogenes ; Recombinant Proteins/genetics ; Retroviridae Proteins/genetics ; Saccharomyces cerevisiae/genetics ; *Saccharomyces cerevisiae Proteins ; Sequence Homology, Nucleic Acid ; Transcription Factors/genetics/immunology/*physiology ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Bioenergetics 765 (1984), S. 12-20 
    ISSN: 0005-2728
    Keywords: (Spinach chloroplast) ; ATPase activation ; Chloroplast lipid ; Coupling factor ; Proteoliposome
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Biochimica et Biophysica Acta (BBA)/Bioenergetics 681 (1982), S. 405-411 
    ISSN: 0005-2728
    Keywords: (Lettuce chloroplast) ; ATPase ; Membrane potential ; Oxonol VI ; Photosynthesis
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    FEBS Letters 150 (1982), S. 27-31 
    ISSN: 0014-5793
    Keywords: ATP hydrolysis ; Chloroplast ; Chloroplast ATPase complex ; Oxonol VI ; Proteoliposome ; Transmembrane electric potential
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Plant Science Letters 22 (1981), S. 89-96 
    ISSN: 0304-4211
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-6830
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary 1. Recent examination of the hypothesis that distinctly phosphorylated NF-H isoforms exist in different types of neurons revealed that the extent of phosphorylation of the heavy neurofilament polypeptide of bovine ventral root motor neurons is markedly higher than that of dorsal root neurons. 2. In the present study we employed endoproteinase ASP-N for isolating the Lys-Ser-Pro (KSP)-rich domain of NF-H, which contains most of the NF-H phosphorylation sites. 3. Treatment of NF-H with ASP-N endoproteinase results in a cascade of products, the last of which is a polypeptide with apparent molecular weight of 120 kDa. Amino terminal sequence and amino acid composition analysis revealed that this fragment contains the KSP-rich domain of NF-H. 4. Treatment of ventral and dorsal root NF-H with ASP-N endoproteinase and analysis of the phosphoserine contents of the resulting 120 kDa fragments revealed that the 120 kDa fragment of ventral root NF-H is significantly more phosphorylated than that of dorsal root NF-H.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2010-10-25
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...