ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Language
Number of Hits per Page
Default Sort Criterion
Default Sort Ordering
Size of Search History
Default Email Address
Default Export Format
Default Export Encoding
Facet list arrangement
Maximum number of values per filter
Auto Completion
Topics (search only within journals and journal articles that belong to one or more of the selected topics)
Feed Format
Maximum Number of Items per Feed
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2020-10-10
    Description: Cowpea provides the cheapest source of protein with an average range of protein content of 23–30%. However, cowpea growth, development, and yield are greatly affected by drought during flowering and pod filling in the sub-Sahelian areas. The best way to cope with this situation is to develop drought-tolerant cowpea varieties. The objective of this study was therefore to evaluate cowpea lines developed through mutagenesis using gamma radiation to assess their reaction under optimal and water-stressed conditions. The response of ten mutants-irradiated Moussa local was then evaluated in pots arranged in a split plot design in a screen house. Two conditions were applied with optimum and water-stressed conditions. The stress was applied for two weeks at flowering. Two cowpea varieties Gorom local (drought-tolerant) and Moussa local (susceptible) nonirradiated were used as checks. Thereafter, field trials under two different sowing dates were conducted to identify the best tolerant mutant line(s) using agromorphological and tolerance indicators. The results indicated that mutant lines (MoussaM51-4P10 and MoussaM43-20P14) exhibited better stress tolerance and produced higher yield under water stress conditions. Stress Tolerance Index (STI) was better to select cowpea mutant tolerant with higher yielding under moderate stress (SI = 35%). The study confirmed that water stress has a negative effect on cowpea seeds production and on leaf chlorophyll content. The high temperature during experiment increased water stress effect mainly on non-irradiated checks (Gorom local and Moussa local).
    Print ISSN: 1687-8159
    Electronic ISSN: 1687-8167
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Hindawi
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...