ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

You have 0 saved results.
Mark results and click the "Add To Watchlist" link in order to add them to this list.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: AWI Bio-24-95729
    Type of Medium: Monograph available for loan
    Pages: XIV, 354 Seiten , Illustrationen
    ISBN: 0195154312 , 9780195154313 , 978-0-19-515431-3
    Series Statement: Long-Term Ecological Research Network Series
    Language: English
    Note: Contents Contributors Part I. Alaska's Past and Present Environment 1. The Conceptual Basis of LTER Studies in the Alaskan Boreal Forest / F. Stuart Chapin III, john Yarie, Keith Van Cleve, and Leslie A. Viereck 2. Regional Overview of Interior Alaska / James E. Beget, David Stone, and David L Verbyla 3. State Factor Control of Soil Formation in Interior Alaska / Chien-Lu Ping, Richard D. Boone, Marcus H. Clark, Edmond C. Packee, and David K. Swanson 4. Climate and Permafrost Dynamics of the Alaskan Boreal Forest / Larry D. Hinzman, Leslie A. Viereck, Phyllis C. Adams, Vladimir E. Romanovsky, and Kenji Yoshikawa 5. Holocene Development of the Alaskan Boreal Forest / Andrea H. Lloyd, Mary E. Edwards, Bruce P. Finney, Jason A. Lynch, Valerie Barber, and Nancy H. Bigelow Part II. Forest Dynamics 6. Floristic Diversity and Vegetation Distribution in the Alaskan Boreal Forest / F. Stuart Chapin III, Teresa Hollingsworth, David F. Murray, Leslie A. Viereck, and Marilyn D. Walker 7. Successional Processes in the Alaskan Boreal Forest / F. Stuart Chapin III, Leslie A. Viereck, Phyllis C. Adams, Keith Van Cleve, Christopher L. Fastie, Robert A. Ott, Daniel Mann, and Jill F. Johnstone 8. Mammalian Herbivore Population Dynamics in the Alaskan Boreal Forest / Eric Rexstad and Knut Kielland 9. Dynamics of Phytophagous Insects and Their Pathogens in Alaskan Boreal Forests / Richard A. Werner, Kenneth F. Raffa, and Barbara L. Illman 10. Running Waters of the Alaskan Boreal Forest / Mark W. Oswood, Nicholas F. Hughes, and Alexander M. Milner Part III. Ecosystem Dynamics 11. Controls over Forest Production in Interior Alaska / John Yarie and Keith Van Cleve 12. The Role of Fine Roots in the Functioning of Alaskan Boreal Forests / Roger W. Ruess, Ronald L. Hendrick, Jason C. Vogel, and Bjartmar Sveinbjornsson 13. Mammalian Herbivory, Ecosystem Engineering, and Ecological Cascades in Alaskan Boreal Forests / Knut Kielland, John P. Bryant, and Roger W. Ruess 14. Microbial Processes in the Alaskan Boreal Forest / Joshua P. Schimel and F. Stuart Chapin III 15. Patterns of Biogeochemistry in Alaskan Boreal Forests / David W. Valentine, Knut Kielland, F. Stuart Chapin III, A. David McCuire, and Keith Van Cleve Part IV. Changing Regional Processes 16. Watershed Hydrology and Chemistry in the Alaskan Boreal Forest: The Central Role of Permafrost / Larry D. Hinzman, W. Robert Bolton, Kevin C. Petrone, Jeremy B. Jones, and Phyllis C. Adams 17. Fire Trends in the Alaskan Boreal Forest / Eric S. Kasischke, T. Scott Rupp, and David L. Verbyla 18. Timber Harvest in Interior Alaska / Tricia L. Wurtz, Robert A. Ott, and John C. Maisch 19. Climate Feedbacks in the Alaskan Boreal Forest / A. David McCuire and F. Stuart Chapin III 20. Communication of Alaskan Boreal Science with Broader Communities / Elena B. Sparrow, Janice C. Dawe, and F. Stuart Chapin III 21. Summary and Synthesis: Past and Future Changes in the Alaskan Boreal Forest / F. Stuart Chapin III, A. David McCuire, Roger W. Ruess, Marilyn W. Walker, Richard D. Boone, Mary E. Edwards, Bruce P. Finney, Larry D. Hinzman, Jeremy B. Jones, Clenn P. Juday, Eric S. Kasischke, Knut Kielland, Andrea H. Lloyd, Mark W. Oswood, Chien-Lu Ping, Eric Rexstad, Vladimir E. Romanovsky, Joshua P. Schimel, Elena B. Sparrow, Bjartmar Sveinbjornsson, David W. Valentine, Keith Van Cleve, David L. Verbyla, Leslie A. Viereck, Richard A. Werner, Tricia L. Wurtz, and John Yarie Index
    Location: AWI Reading room
    Branch Library: AWI Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Unknown
    Boca Raton [u.a.] : CRC Press
    Call number: 96.0008
    Pages: 198 S.
    ISBN: 1566701074
    Series Statement: Mapping sciences series
    Classification:
    Photogrammetry, Remote Sensing
    Language: English
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 26 (1990), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Journal of the American Water Resources Association 29 (1993), S. 0 
    ISSN: 1752-1688
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 19 (1995), S. 579-589 
    ISSN: 1432-1009
    Keywords: Deer habitat ; GIS ; Edges ; Old-growth forests ; Logging ; Clear-cuts
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract We used a vector-based geographic information system (GIS) to examine habitat selection by radiocollared Sitka black-tailed deer (Odocoileus hemionus sitkensis) in logged forests of southeast Alaska. Our main objective was to explain deer habitat selection relative to old-growth/clear-cut edges and edge habitats at two different spatial scales. Deer home ranges contained higher percentages of recent clear-cuts (50–69%) than the study area (37%;P〈0.01) and had higher old-growth/clear-cut edge densities than expected by chance (P〈0.01). Deer relocation points were closer to old-growth/clear-cut edges (average=135 m) than random points located within each deer's relocation area (average=168 m;P=0.05). Likewise, deer relocations were closer to old-growth/clear-cut edges than points randomly located within old-growth stands or recent clear-cuts (P〈0.01). As the size of clear-cuts increased, both deer relocation density and the proportion of a clear-cut occupied by deer home ranges decreased. Because old growth is important deer habitat and clear-cuts can produce deer forage for only 20–30 years after logging in southeast Alaska, deer management plans such as preserving entire watersheds and maintaining mixes of old growth and recent clear-cut have been proposed. Our data suggest that deer need a diversity of habitats near each other within their home ranges.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Environmental management 13 (1989), S. 783-787 
    ISSN: 1432-1009
    Keywords: Bootstrap ; Cross-validation ; Discriminant analysis ; Habitat modeling ; Resampling methods
    Source: Springer Online Journal Archives 1860-2000
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Notes: Abstract Predictive models of wildlife-habitat relationships often have been developed without being tested The apparent classification accuracy of such models can be optimistically biased and misleading. Data resampling methods exist that yield a more realistic estimate of model classification accuracy These methods are simple and require no new sample data. We illustrate these methods (cross-validation, jackknife resampling, and bootstrap resampling) with computer simulation to demonstrate the increase in precision of the estimate. The bootstrap method is then applied to field data as a technique for model comparison We recommend that biologists use some resampling procedure to evaluate wildlife habitat models prior to field evaluation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2010-07-01
    Description: A synthesis was carried out to examine Alaska’s boreal forest fire regime. During the 2000s, an average of 767 000 ha·year–1 burned, 50% higher than in any previous decade since the 1940s. Over the past 60 years, there was a decrease in the number of lightning-ignited fires, an increase in extreme lightning-ignited fire events, an increase in human-ignited fires, and a decrease in the number of extreme human-ignited fire events. The fraction of area burned from human-ignited fires fell from 26% for the 1950s and 1960s to 5% for the 1990s and 2000s, a result from the change in fire policy that gave the highest suppression priorities to fire events that occurred near human settlements. The amount of area burned during late-season fires increased over the past two decades. Deeper burning of surface organic layers in black spruce ( Picea mariana (Mill.) BSP) forests occurred during late-growing-season fires and on more well-drained sites. These trends all point to black spruce forests becoming increasingly vulnerable to the combined changes of key characteristics of Alaska’s fire regime, except on poorly drained sites, which are resistant to deep burning. The implications of these fire regime changes to the vulnerability and resilience of Alaska’s boreal forests and land and fire management are discussed.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2003-05-01
    Description: The relationship between lightning strike density, vegetation, and elevation was investigated at three different spatial scales: (i) interior Alaska (~630 000 km2), (ii) six longitudinal transects (~100 000 km2), and (iii) 17 individual physiographic subregions (~50 000 km2) within Alaska. The data consisted of 14 years (19861999) of observations by the Alaska Fire Service lightning strike detection network. The best explanation for the variation in lightning strike density was provided by a combination of the areal coverage of boreal forest and elevation. Each of these factors has the potential to influence the convective activity. Our study suggests that in a region that is climatically favorable for air-mass thunderstorms, surface properties may enhance local lightning storm development in the boreal forest. Lightning strikes were found to occur frequently both in mountainous areas and at river flats, which is contrary to results from previous Alaskan studies.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1987-09-01
    Description: Classification trees are discriminant models structured as dichtomous keys. A simple classification tree is presented and contrasted with a linear discriminant function. Classification trees have several advantages when compared with linear discriminant analysis. The method is robust with respect to outlier cases. It is nonparametric and can use nominal, ordinal, interval, and ratio scaled predictor variables. Cross-validation is used during tree development to prevent overrating the tree with too many predictor variables. Missing values are handled by using surrogate splits based on nonmissing predictor variables. Classification trees, like linear discriminant analysis, have potential prediction bias and therefore should be validated before being accepted.
    Print ISSN: 0045-5067
    Electronic ISSN: 1208-6037
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-07-26
    Description: Subsistence harvesters in high latitudes rely on frozen rivers for winter access to local resources. During recent decades, interior Alaskan residents have observed changes in river ice regimes that are significant hindrances to travel and subsistence practices. We used remote sensing in combination with local observations to examine changes in seasonality of river breakup and freeze-up and to assess the implications on travel for subsistence harvesters. Spring and autumn air temperatures, respectively, were found to impact timing of breakup (−2.0 days °C−1) and freeze-up (+2.0 days °C−1). Spring air temperatures have increased by 0.2°–0.6°C decade−1 over the last 62–93 years, depending on study area and time period. Local observations indicate that the breakup season has advanced by about 6 days over the last century. Autumn air temperatures have not changed over the long term, but have been generally warmer over the last 15 years. Over various time periods throughout the last century, we found no change in freeze-up timing for some communities, whereas other communities showed delays of 1.0–2.1 days decade−1. The length of time the river was unsafe for travel during the freeze-up season was 2 to 3 times greater than during breakup. The duration of river ice cover for safe travel has declined over the last century and is expected to decline further as the climate continues to warm, thereby presenting new challenges to accessing subsistence resources and necessitating community adaptation.
    Print ISSN: 1948-8327
    Electronic ISSN: 1948-8335
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...