ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

Your search history is empty.
feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The visual computer 12 (1996), S. 445-450 
    ISSN: 1432-2315
    Keywords: Key words: Adjacency graph ; Finite element analysis (FEA) data
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    The visual computer 12 (1996), S. 445-450 
    ISSN: 1432-2315
    Keywords: Adjacency graph ; Finite element analysis (FEA) data
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper, we present an algorithm for constructing adjacency graphs of 3D finite element analysis (FEA) data. Adjacency graphs are created to represent the connectivities of FEA data cells. They are used in most visualization methods for FEA data. We stress that in many engineering applications FEA data sets do not contain the adjacency information. This is opposite to computer-aided geometric design where, e.g., the winged edge geometrical representation is usually generated and utilized. By establishing intermediate data structures and using bin-sorting, we developed an efficient algorithm for constructing such graphs. The total time complexity of the algorithm is linear in the number of data cells.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The plotting of streamlines is an effective way of visualizing fluid motion in steady flows. Additional information about the flowfield, such as local rotation and expansion, can be shown by drawing in the form of a ribbon or tube. In this paper, we present efficient algorithms for the construction of streamlines, streamribbons and streamtubes on unstructured grids. A specialized version of the Runge-Kutta method has been developed to speed up the integration of particle paths. We have also derived closed-form solutions for calculating angular rotation rate and radius to construct streamribbons and streamtubes, respectively. According to our analysis and test results, these formulations are two to four times better in performance than previous numerical methods. As a large number of traces are calculated, the improved performance could be significant.
    Keywords: COMPUTER PROGRAMMING AND SOFTWARE
    Type: NASA-CR-198198 , NAS 1.26:198198 , ICASE-95-58 , Visualization 1995 Conference; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...