ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 21
    Publication Date: 2018-03-16
    Description: This study analyzes simulated regional-scale ozone burdens both near the surface and aloft, estimates process contributions to these burdens, and calculates the sensitivity of the simulated regional-scale ozone burden to several key model inputs with a particular emphasis on boundary conditions derived from hemispheric or global-scale models. The Community Multiscale Air Quality (CMAQ) model simulations supporting this analysis were performed over the continental US for the year 2010 within the context of the Air Quality Model Evaluation International Initiative (AQMEII) and Task Force on Hemispheric Transport of Air Pollution (TF-HTAP) activities. CMAQ process analysis (PA) results highlight the dominant role of horizontal and vertical advection on the ozone burden in the mid-to-upper troposphere and lower stratosphere. Vertical mixing, including mixing by convective clouds, couples fluctuations in free-tropospheric ozone to ozone in lower layers. Hypothetical bounding scenarios were performed to quantify the effects of emissions, boundary conditions, and ozone dry deposition on the simulated ozone burden. Analysis of these simulations confirms that the characterization of ozone outside the regional-scale modeling domain can have a profound impact on simulated regional-scale ozone. This was further investigated by using data from four hemispheric or global modeling systems (Chemistry – Integrated Forecasting Model (C-IFS), CMAQ extended for hemispheric applications (H-CMAQ), the Goddard Earth Observing System model coupled to chemistry (GEOS-Chem), and AM3) to derive alternate boundary conditions for the regional-scale CMAQ simulations. The regional-scale CMAQ simulations using these four different boundary conditions showed that the largest ozone abundance in the upper layers was simulated when using boundary conditions from GEOS-Chem, followed by the simulations using C-IFS, AM3, and H-CMAQ boundary conditions, consistent with the analysis of the ozone fields from the global models along the CMAQ boundaries. Using boundary conditions from AM3 yielded higher springtime ozone columns burdens in the middle and lower troposphere compared to boundary conditions from the other models. For surface ozone, the differences between the AM3-driven CMAQ simulations and the CMAQ simulations driven by other large-scale models are especially pronounced during spring and winter where they can reach more than 10 ppb for seasonal mean ozone mixing ratios and as much as 15 ppb for domain-averaged daily maximum 8 h average ozone on individual days. In contrast, the differences between the C-IFS-, GEOS-Chem-, and H-CMAQ-driven regional-scale CMAQ simulations are typically smaller. Comparing simulated surface ozone mixing ratios to observations and computing seasonal and regional model performance statistics revealed that boundary conditions can have a substantial impact on model performance. Further analysis showed that boundary conditions can affect model performance across the entire range of the observed distribution, although the impacts tend to be lower during summer and for the very highest observed percentiles. The results are discussed in the context of future model development and analysis opportunities.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 22
    Publication Date: 2018-06-21
    Description: In this study we introduce a hybrid ensemble consisting of air quality models operating at both the global and regional scale. The work is motivated by the fact that these different types of models treat specific portions of the atmospheric spectrum with different levels of detail, and it is hypothesized that their combination can generate an ensemble that performs better than mono-scale ensembles. A detailed analysis of the hybrid ensemble is carried out in the attempt to investigate this hypothesis and determine the real benefit it produces compared to ensembles constructed from only global-scale or only regional-scale models. The study utilizes 13 regional and 7 global models participating in the Hemispheric Transport of Air Pollutants phase 2 (HTAP2)–Air Quality Model Evaluation International Initiative phase 3 (AQMEII3) activity and focuses on surface ozone concentrations over Europe for the year 2010. Observations from 405 monitoring rural stations are used for the evaluation of the ensemble performance. The analysis first compares the modelled and measured power spectra of all models and then assesses the properties of the mono-scale ensembles, particularly their level of redundancy, in order to inform the process of constructing the hybrid ensemble. This study has been conducted in the attempt to identify that the improvements obtained by the hybrid ensemble relative to the mono-scale ensembles can be attributed to its hybrid nature. The improvements are visible in a slight increase of the diversity (4 % for the hourly time series, 10 % for the daily maximum time series) and a smaller improvement of the accuracy compared to diversity. Root mean square error (RMSE) improved by 13–16 % compared to G and by 2–3 % compared to R. Probability of detection (POD) and false-alarm rate (FAR) show a remarkable improvement, with a steep increase in the largest POD values and smallest values of FAR across the concentration ranges. The results show that the optimal set is constructed from an equal number of global and regional models at only 15 % of the stations. This implies that for the majority of the cases the regional-scale set of models governs the ensemble. However given the high degree of redundancy that characterizes the regional-scale models, no further improvement could be expected in the ensemble performance by adding yet more regional models to it. Therefore the improvement obtained with the hybrid set can confidently be attributed to the different nature of the global models. The study strongly reaffirms the importance of an in-depth inspection of any ensemble of opportunity in order to extract the maximum amount of information and to have full control over the data used in the construction of the ensemble.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 23
    Publication Date: 2019-03-28
    Description: The TROPOspheric Monitoring Instrument (TROPOMI) on board the Sentinel-5 Precursor (S5P) satellite launched in October 2017 yields a wealth of atmospheric composition data, including retrievals of total column ozone (TCO3) that are provided in near-real-time (NRT) and off-line. The NRT TCO3 retrievals (v1.0.0–v1.1.2) have been included in the data assimilation system of the Copernicus Atmosphere Monitoring Service (CAMS), and tests to monitor the data and to carry out first assimilation experiments with them have been performed for the period 26 November 2017 to 30 November 2018. The TROPOMI TCO3 data agree to within 2 % with the CAMS analysis over large parts of the globe between 60∘ N and 60∘ S and also with TCO3 retrievals from the Ozone Monitoring Instrument (OMI) and the Global Ozone Monitoring Experiment-2 (GOME-2) that are routinely assimilated by CAMS. However, the TCO3 NRT data from TROPOMI show some retrieval anomalies at high latitudes, at low solar elevations and over snow/ice (e.g. Antarctica and snow-covered land areas in the Northern Hemisphere), where the differences with the CAMS analysis and the other data sets are larger. These differences are particularly pronounced over land in the NH during winter and spring (when they can reach up to 40 DU) and come mainly from the surface albedo climatology that is used in the NRT TROPOMI TCO3 retrieval. This climatology has a coarser horizontal resolution than the TROPOMI TCO3 data, which leads to problems in areas where there are large changes in reflectivity from pixel to pixel, e.g. pixels covered by snow/ice or not. The differences between TROPOMI and the CAMS analysis also show some dependency on scan position. The assimilation of TROPOMI TCO3 has been tested in the CAMS system for data between 60∘ N and 60∘ S and for solar elevations greater than 10∘ and is found to have a small positive impact on the ozone analysis compared to Brewer TCO3 data and an improved fit to ozone sondes in the tropical troposphere and to IAGOS aircraft profiles at West African airports. The impact of the TROPOMI data is relatively small because the CAMS analysis is already well constrained by several other ozone retrievals that are routinely assimilated. When averaged over the periods February–April and September–October 2018, differences between experiments with and without assimilation of TROPOMI data are less than 2 % for TCO3 and less than 3 % in the vertical for seasonal mean zonal mean O3 mixing ratios, with the largest relative differences found in the troposphere.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 24
    Publication Date: 2018-07-17
    Description: The evaluation and intercomparison of air quality models is key to reducing model errors and uncertainty. The projects AQMEII3 and EURODELTA-Trends, in the framework of the Task Force on Hemispheric Transport of Air Pollutants and the Task Force on Measurements and Modelling, respectively (both task forces under the UNECE Convention on the Long Range Transport of Air Pollution, LTRAP), have brought together various regional air quality models to analyze their performance in terms of air concentrations and wet deposition, as well as to address other specific objectives.This paper jointly examines the results from both project communities by intercomparing and evaluating the deposition estimates of reduced and oxidized nitrogen (N) and sulfur (S) in Europe simulated by 14 air quality model systems for the year 2010. An accurate estimate of deposition is key to an accurate simulation of atmospheric concentrations. In addition, deposition fluxes are increasingly being used to estimate ecological impacts. It is therefore important to know by how much model results differ and how well they agree with observed values, at least when comparison with observations is possible, such as in the case of wet deposition.This study reveals a large variability between the wet deposition estimates of the models, with some performing acceptably (according to previously defined criteria) and others underestimating wet deposition rates. For dry deposition, there are also considerable differences between the model estimates. An ensemble of the models with the best performance for N wet deposition was made and used to explore the implications of N deposition in the conservation of protected European habitats. Exceedances of empirical critical loads were calculated for the most common habitats at a resolution of 100  ×  100 m2 within the Natura 2000 network, and the habitats with the largest areas showing exceedances are determined.Moreover, simulations with reduced emissions in selected source areas indicated a fairly linear relationship between reductions in emissions and changes in the deposition rates of N and S. An approximate 20 % reduction in N and S deposition in Europe is found when emissions at a global scale are reduced by the same amount. European emissions are by far the main contributor to deposition in Europe, whereas the reduction in deposition due to a decrease in emissions in North America is very small and confined to the western part of the domain. Reductions in European emissions led to substantial decreases in the protected habitat areas with critical load exceedances (halving the exceeded area for certain habitats), whereas no change was found, on average, when reducing North American emissions in terms of average values per habitat.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 25
    Publication Date: 2018-05-16
    Description: This study uses multi-model ensemble results of 11 models from the second phase of Task Force Hemispheric Transport of Air Pollution (HTAP II) to calculate the global sulfur (S) and nitrogen (N) deposition in 2010. Modeled wet deposition is evaluated with observation networks in North America, Europe and East Asia. The modeled results agree well with observations, with 76–83 % of stations being predicted within ±50 % of observations. The models underestimate SO42-, NO3- and NH4+ wet depositions in some European and East Asian stations but overestimate NO3- wet deposition in the eastern United States. Intercomparison with previous projects (PhotoComp, ACCMIP and HTAP I) shows that HTPA II has considerably improved the estimation of deposition at European and East Asian stations. Modeled dry deposition is generally higher than the “inferential” data calculated by observed concentration and modeled velocity in North America, but the inferential data have high uncertainty, too. The global S deposition is 84 Tg(S) in 2010, with 49 % in continental regions and 51 % in the ocean (19 % of which coastal). The global N deposition consists of 59 Tg(N) oxidized nitrogen (NOy) deposition and 64 Tg(N) reduced nitrogen (NHx) deposition in 2010. About 65 % of N is deposited in continental regions, and 35 % in the ocean (15 % of which coastal). The estimated outflow of pollution from land to ocean is about 4 Tg(S) for S deposition and 18 Tg(N) for N deposition. Comparing our results to the results in 2001 from HTAP I, we find that the global distributions of S and N deposition have changed considerably during the last 10 years. The global S deposition decreases 2 Tg(S) (3 %) from 2001 to 2010, with significant decreases in Europe (5 Tg(S) and 55 %), North America (3 Tg(S) and 29 %) and Russia (2 Tg(S) and 26 %), and increases in South Asia (2 Tg(S) and 42 %) and the Middle East (1 Tg(S) and 44 %). The global N deposition increases by 7 Tg(N) (6 %), mainly contributed by South Asia (5 Tg(N) and 39 %), East Asia (4 Tg(N) and 21 %) and Southeast Asia (2 Tg(N) and 21 %). The NHx deposition increases with no control policy on NH3 emission in North America. On the other hand, NOy deposition has started to dominate in East Asia (especially China) due to boosted NOx emission.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 26
    Publication Date: 2017-02-09
    Description: A new global reanalysis data set of atmospheric composition (AC) for the period 2003–2015 has been produced by the Copernicus Atmosphere Monitoring Service (CAMS). Satellite observations of total column (TC) carbon monoxide (CO) and aerosol optical depth (AOD), as well as several TC and profile observations of ozone, have been assimilated with the Integrated Forecasting System for Composition (C-IFS) of the European Centre for Medium-Range Weather Forecasting. Compared to the previous Monitoring Atmospheric Composition and Climate (MACC) reanalysis (MACCRA), the new CAMS interim reanalysis (CAMSiRA) is of a coarser horizontal resolution of about 110 km, compared to 80 km, but covers a longer period with the intent to be continued to present day. This paper compares CAMSiRA with MACCRA and a control run experiment (CR) without assimilation of AC retrievals. CAMSiRA has smaller biases than the CR with respect to independent observations of CO, AOD and stratospheric ozone. However, ozone at the surface could not be improved by the assimilation because of the strong impact of surface processes such as dry deposition and titration with nitrogen monoxide (NO), which were both unchanged by the assimilation. The assimilation of AOD led to a global reduction of sea salt and desert dust as well as an exaggerated increase in sulfate. Compared to MACCRA, CAMSiRA had smaller biases for AOD, surface CO and TC ozone as well as for upper stratospheric and tropospheric ozone. Finally, the temporal consistency of CAMSiRA was better than the one of MACCRA. This was achieved by using a revised emission data set as well as by applying careful selection and bias correction to the assimilated retrievals. CAMSiRA is therefore better suited than MACCRA for the study of interannual variability, as demonstrated for trends in surface CO.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 27
    Publication Date: 2018-04-27
    Description: The impact of air pollution on human health and the associated external costs in Europe and the United States (US) for the year 2010 are modeled by a multi-model ensemble of regional models in the frame of the third phase of the Air Quality Modelling Evaluation International Initiative (AQMEII3). The modeled surface concentrations of O3, CO, SO2 and PM2.5 are used as input to the Economic Valuation of Air Pollution (EVA) system to calculate the resulting health impacts and the associated external costs from each individual model. Along with a base case simulation, additional runs were performed introducing 20 % anthropogenic emission reductions both globally and regionally in Europe, North America and east Asia, as defined by the second phase of the Task Force on Hemispheric Transport of Air Pollution (TF-HTAP2). Health impacts estimated by using concentration inputs from different chemistry–transport models (CTMs) to the EVA system can vary up to a factor of 3 in Europe (12 models) and the United States (3 models). In Europe, the multi-model mean total number of premature deaths (acute and chronic) is calculated to be 414 000, while in the US, it is estimated to be 160 000, in agreement with previous global and regional studies. The economic valuation of these health impacts is calculated to be EUR 300 billion and 145 billion in Europe and the US, respectively. A subset of models that produce the smallest error compared to the surface observations at each time step against an all-model mean ensemble results in increase of health impacts by up to 30 % in Europe, while in the US, the optimal ensemble mean led to a decrease in the calculated health impacts by  ∼  11 %. A total of 54 000 and 27 500 premature deaths can be avoided by a 20 % reduction of global anthropogenic emissions in Europe and the US, respectively. A 20 % reduction of North American anthropogenic emissions avoids a total of  ∼  1000 premature deaths in Europe and 25 000 total premature deaths in the US. A 20 % decrease of anthropogenic emissions within the European source region avoids a total of 47 000 premature deaths in Europe. Reducing the east Asian anthropogenic emissions by 20 % avoids  ∼  2000 total premature deaths in the US. These results show that the domestic anthropogenic emissions make the largest impacts on premature deaths on a continental scale, while foreign sources make a minor contribution to adverse impacts of air pollution.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 28
    Publication Date: 2013-09-09
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 29
  • 30
    Publication Date: 2019-11-07
    Description: This article describes the IFS-AER aerosol module used operationally in the Integrated Forecasting System (IFS) cycle 45R1, operated by the European Centre for Medium-Range Weather Forecasts (ECMWF) in the framework of the Copernicus Atmospheric Monitoring Services (CAMS). We describe the different parameterizations for aerosol sources, sinks, and its chemical production in IFS-AER, as well as how the aerosols are integrated in the larger atmospheric composition forecasting system. The focus is on the entire 45R1 code base, including some components that are not used operationally, in which case this will be clearly specified. This paper is an update to the Morcrette et al. (2009) article that described aerosol forecasts at the ECMWF using cycle 32R2 of the IFS. Between cycles 32R2 and 45R1, a number of source and sink processes have been reviewed and/or added, notably increasing the complexity of IFS-AER. A greater integration with the tropospheric chemistry scheme of the IFS has been achieved for the sulfur cycle and for nitrate production. Two new species, nitrate and ammonium, have also been included in the forecasting system. Global budgets and aerosol optical depth (AOD) fields are shown, as is an evaluation of the simulated particulate matter (PM) and AOD against observations, showing an increase in skill from cycle 40R2, used in the CAMS interim ReAnalysis (CAMSiRA), to cycle 45R1.
    Print ISSN: 1991-959X
    Electronic ISSN: 1991-9603
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...