ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 11
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 3828-3844 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The principal toughening mechanism of a substantially toughened, rubber-modified epoxy has again been shown to involve internal cavitation of the rubber particles and the subsequent formation of shear bands. Additional evidence supporting this sequence of events which provides a significant amount of toughness enhancement, is presented. However, in addition to this well-known mechanism, more subtle toughening mechanisms have been found in this work. Evidence for such mechanisms as crack deflection and particle bridging is shown under certain circumstances in rubber-modified epoxies. The occurrence of these toughening mechanisms appears to have a particle size dependence. Relatively large particles provide only a modest increase in fracture toughness by a particle bridging/crack deflection mechanism. In contrast, smaller particles provide a significant increase in toughness by cavitation-induced shear banding. A critical, minimum diameter for particles which act as bridging particles exists and this critical diameter appears to scale with the properties of the neat epoxy. Bimodal mixtures of epoxies containing small and large particles are also examined and no synergistic effects are observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 15 (1996), S. 277-281 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 28 (1993), S. 6392-6398 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Many rubber-toughened epoxies are thought to derive the bulk of their toughness through the processes of rubber cavitation and plastic shear-yielding in the epoxy matrix. Constraint relief has been considered to be a key mechanism which allows extra plastic shear deformation to occur. The present work attempts to provide direct experimental evidence of the constraint relief effect by combining testing geometries that vary the degree of constraint with microscopic observations. The results show that the success of a rubber as a toughening agent for epoxies is closely related to its ability to cavitate. Evidence for local constraint relief is presented. Upon cavitation of the rubber, the stress state in a specimen with initial constraint is found to change to a plane stress state. The constraint relief circumvents or delays the crack initiation in the matrix, which allows more plastic deformation to occur.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 26 (1991), S. 3449-3456 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Toughening mechanisms of a polyamide 6,6/polyphenylene oxide alloy containing an elastomer tested under a slow rate, an impact rate, and a low temperature have been investigated using various microscopy techniques. It is found that the toughening mechanisms of the alloy may change from crazing/shear yielding, to crack bridging/crazing, and to transparticle failure, depending on the testing conditions. Except for the low temperature high strain rate testing condition and in the plane stress region of the crack, the crazing mechanism has been observed in all the conditions we studied. When the testing rate is high, the shear yielding mechanism is suppressed; multiple crazing and particle bridging mechanisms appear to dominate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 33 (1998), S. 5473-5484 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The fracture toughness and toughening mechanism of two epoxy matrices containing varying concentrations of pre-formed polyamide-12 particles was investigated. The pre-formed thermoplastic modifier was used to keep the physical and morphological characteristics of the second phase constant while varying the matrix intrinsic toughness to simplify the interpretation of toughening results. We observed that these particles toughened the epoxies through a crack bridging mechanism involving large plastic deformation of the second phase.This mechanism was found to be effective independent of the potential of the matrix for plastic deformation since the increasing fracture toughness was accomplished without significant amounts of plastic deformation in the epoxy matrix. A quantitative model was adapted to account for the increase in toughness due to the crack bridging mechanism. From this model, it was possible to determine the factors which are most important when attempting to toughen a material through thermoplastic crack bridging. A better understanding of the specific factors which influence the efficiency of the crack bridging mechanism enables the fracture properties of brittle materials to be further improved with thermoplastic addition. This was shown to be very important when attempting to enhance the toughness of materials which are believed to be “un-toughenable” by conventional rubber modification, or materials whose other mechanical properties suffer from the addition of elastomeric materials.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this part of the series, the impact behaviour of the PBT and PC blends without impact modifier was studied. Failure mechanism of the blends under various conditions was discussed. It was found that the key toughening process, i.e. interfacial debonding-cavitation, was disabled when the blends were subjected to impact loading. Hence, the fracture of the thick PBT/PC specimens with strong interface occurred under plane-strain condition. Their impact toughness obeys the rule of mixtures and synergistic toughening could not be achieved. When thinner specimens were tested, the fracture took place under non-plane-strain condition. But, the toughness of the blends was much lower than the value predicted by the rule of mixtures. Negative blending effect was obtained. Study on the strain rate effect suggests that under impact loading, the PC domains in the blends are subjected to an additional plastic constraint imposed by the neighboring PBT matrix, which is more rigid at a higher strain rate. Since fracture of the PC is highly sensitive to the plastic constraint at the crack-tip, the PBT imposed high plastic constraint promotes brittle fracture of the PC, leading to a deteriorated impact resistance. Evidences from TEM, SEM and OM studies support the mechanism proposed. Based on this mechanism, some suggestions on the selection of polymer components and design of microstructure for rigid-rigid polymer blends are also given.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 29 (1994), S. 2205-2215 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The fracture toughness and uniaxial tensile yield strengths of unmodified and CTBN-rubber-modified epoxies were measured under hydrostatic pressure. The purpose of these experiments was to learn how suppressing cavitation in rubber particles affects the deformation mechanisms and the fracture toughness of rubber-modified epoxy. It was found that the cavitation of CTBN-rubber could be suppressed at a relatively low pressure (between 30 and 38 M Pa). With cavitation suppressed, the rubber particles are unable to induce massive shearyielding in the epoxy matrix, and the fracture toughness of the rubber-modified epoxy is no higher than that of the unmodified epoxy in the pressure range studied. Unmodified epoxy shows a brittle-to-ductile transition in fracture toughness test. The reason for this transition is the postponement of the cracking process by applied pressure.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 32 (1997), S. 761-771 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The objective of the present study was to determine whether the ductility and toughenability of a highly cross-linked epoxy resin, which has a high glass transition temperature, Tg, can be enhanced by the incorporation of a ductile thermoplastic resin. Diglycidyl ether of bisphenol-A (DGEBA) cured by diamino diphenyl sulphone (DDS) was used as the base resin. Polyethersulphone (PES) was used as the thermoplastic modifier. Fracture toughness and shear ductility tests were performed to characterize the materials. The fracture toughness of the DDS-cured epoxy was not enhanced by simply adding PES. However, in the presence of rubber particles as a third component, the toughness of the PES–rubber-modified epoxy was found to improve with increasing PES content. The toughening mechanisms were determined to be rubber cavitation, followed by plastic deformation of the matrix resin. It was also determined, through uniaxial compression tests, that the shear ductility of the DDS-cured epoxy was enhanced by the incorporation of PES. These results imply that the intrinsic ductility, which had been enhanced by the PES addition, was only activated under the stress state change due to the cavitation of the rubber particles. The availability of increasing matrix ductility seems to be responsible for the increase in toughness.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 33 (1998), S. 3479-3488 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The local strains in unmodified and rubber-modified epoxies under multiaxial stress states were examined. Matrix ductility was varied by using epoxide resins of different epoxide monomer molecular weights. The stress state was altered from a plane strain case to a plane stress case by varying the thickness of the test specimens. It was confirmed that, in the case of unmodified resins, the thinner specimens which experienced nearly uniaxial tensile stress exhibited much higher local strains at failure than the thicker counterparts which experienced highly triaxial tensile stress. Also, the cross-link density was reduced as monomer molecular weight increased, thus the increase in local plastic strain due to the stress state change also became greater. Furthermore, it was found that rubber modification markedly increased the plastic strain to failure, irrespective of the specimen dimensions, and that the extent of this plastic strain increased as cross-link density was lowered. These results are consistent with the concept that the cavitation of rubber particles relieves the initial multiaxial constraint in a thick specimen, induces a stress state closer to plane stress throughout the specimen, and consequently enables the matrix to deform to a larger extent. The results also show clearly that the toughenability of a matrix resin is not independent of the stress state and the matrix ductility.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 20
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 8 (1989), S. 921-924 
    ISSN: 1573-4811
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...