ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
  • 11
    Publication Date: 2024-02-01
    Keywords: Alkalinity, total; Ammonium; Biogeochemical Processes in the Oceans and Fluxes; Bottle, Niskin; Carbon dioxide, partial pressure; Carbon dioxide, total; Chlorophyll a; Date/Time of event; Density, sigma-theta (0); DEPTH, water; Event label; JGOFS; Joint Global Ocean Flux Study; KERFIX; KERFIX_19930130; KERFIX_19930312; KERFIX_19930406; KERFIX_19930515; KERFIX_19930610; KERFIX_19930716; KERFIX_19930817; KERFIX_19930916; KERFIX_19931027; KERFIX_19931128; KERFIX_19931227; Kerguelen; NIS; Nitrate; ORFOIS; Origin and Fate of Biogenic Particle Fluxes in the Ocean; Oxygen; Phosphate; Pressure, water; PROOF; Salinity; Silicate; Silicon Cycling in the World Ocean; SINOPS; Temperature, water; Temperature, water, potential; Time-series station
    Type: Dataset
    Format: text/tab-separated-values, 2096 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 12
    Publication Date: 2024-02-01
    Keywords: Ammonium; Biogeochemical Processes in the Oceans and Fluxes; Bottle, Niskin; Chlorophyll a; Date/Time of event; Density, sigma-theta (0); DEPTH, water; Event label; JGOFS; Joint Global Ocean Flux Study; KERFIX; KERFIX_19950108; KERFIX_19950227; KERFIX_19950320; Kerguelen; NIS; Nitrate; ORFOIS; Origin and Fate of Biogenic Particle Fluxes in the Ocean; Pressure, water; PROOF; Salinity; Silicate; Silicon Cycling in the World Ocean; SINOPS; Temperature, water; Temperature, water, potential; Time-series station
    Type: Dataset
    Format: text/tab-separated-values, 375 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 13
    Publication Date: 2024-02-01
    Keywords: ANTARES-IV; ANTARES-IV_003; ANTARES-IV_004; ANTARES-IV_005; ANTARES-IV_006; ANTARES-IV_007; ANTARES-IV_008; ANTARES-IV_009; ANTARES-IV_010; ANTARES-IV_011; ANTARES-IV_012; ANTARES-IV_013; ANTARES-IV_014; ANTARES-IV_015; ANTARES-IV_016; ANTARES-IV_017; ANTARES-IV_018; ANTARES-IV_019; ANTARES-IV_020; ANTARES-IV_021; ANTARES-IV_022; ANTARES-IV_023; ANTARES-IV_024; ANTARES-IV_025; ANTARES-IV_026; ANTARES-IV_027; ANTARES-IV_028; ANTARES-IV_029; ANTARES-IV_030; ANTARES-IV_031; ANTARES-IV_032; ANTARES-IV_033; ANTARES-IV_034; ANTARES-IV_035; ANTARES-IV_036; ANTARES-IV_037; ANTARES-IV_038; ANTARES-IV_039; ANTARES-IV_040; ANTARES-IV_041; ANTARES-IV_042; ANTARES-IV_043; ANTARES-IV_044; ANTARES-IV_045; ANTARES-IV_046; ANTARES-IV_047; ANTARES-IV_048; ANTARES-IV_049; ANTARES-IV_050; ANTARES-IV_051; ANTARES-IV_052; ANTARES-IV_053; ANTARES-IV_054; ANTARES-IV_055; ANTARES-IV_056; ANTARES-IV_057; ANTARES-IV_058; ANTARES-IV_059; ANTARES-IV_060; ANTARES-IV_061; ANTARES-IV_062; ANTARES-IV_063; ANTARES-IV_064; ANTARES-IV_065; ANTARES-IV_066; ANTARES-IV_067; ANTARES-IV_068; ANTARES-IV_069; ANTARES-IV_070; ANTARES-IV_071; ANTARES-IV_072; ANTARES-IV_073; ANTARES-IV_074; ANTARES-IV_075; ANTARES-IV_076; ANTARES-IV_077; ANTARES-IV_078; ANTARES-IV_079; ANTARES-IV_080; ANTARES-IV_081; ANTARES-IV_082; ANTARES-IV_083; ANTARES-IV_084; ANTARES-IV_085; ANTARES-IV_086; ANTARES-IV_087; ANTARES-IV_088; ANTARES-IV_089; ANTARES-IV_090; ANTARES-IV_091; ANTARES-IV_092; ANTARES-IV_093; ANTARES-IV_094; ANTARES-IV_095; ANTARES-IV_096; ANTARES-IV_097; ANTARES-IV_098; ANTARES-IV_099; ANTARES-IV_100; ANTARES-IV_101; ANTARES-IV_102; ANTARES-IV_103; ANTARES-IV_104; ANTARES-IV_105; ANTARES-IV_106; ANTARES-IV_107; Biogeochemical Processes in the Oceans and Fluxes; CTD/Rosette; CTD-RO; Date/Time of event; Density, sigma-theta (0); DEPTH, water; Event label; JGOFS; Joint Global Ocean Flux Study; Latitude of event; Longitude of event; Marion Dufresne (1995); Oxygen; Pressure, water; PROOF; Salinity; Temperature, water; Temperature, water, potential
    Type: Dataset
    Format: text/tab-separated-values, 811124 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 14
    Publication Date: 2024-02-01
    Keywords: ANTARES-IV; ANTARES-IV_003; ANTARES-IV_004; ANTARES-IV_005; ANTARES-IV_006; ANTARES-IV_007; ANTARES-IV_008; ANTARES-IV_009; ANTARES-IV_010; ANTARES-IV_011; ANTARES-IV_012; ANTARES-IV_013; ANTARES-IV_014; ANTARES-IV_015; ANTARES-IV_016; ANTARES-IV_017; ANTARES-IV_018; ANTARES-IV_019; ANTARES-IV_020; ANTARES-IV_021; ANTARES-IV_022; ANTARES-IV_023; ANTARES-IV_024; ANTARES-IV_025; ANTARES-IV_026; ANTARES-IV_027; ANTARES-IV_028; ANTARES-IV_029; ANTARES-IV_030; ANTARES-IV_031; ANTARES-IV_033; ANTARES-IV_034; ANTARES-IV_035; ANTARES-IV_036; ANTARES-IV_037; ANTARES-IV_038; ANTARES-IV_039; ANTARES-IV_040; ANTARES-IV_041; ANTARES-IV_042; ANTARES-IV_043; ANTARES-IV_045; ANTARES-IV_046; ANTARES-IV_047; ANTARES-IV_048; ANTARES-IV_049; ANTARES-IV_050; ANTARES-IV_051; ANTARES-IV_052; ANTARES-IV_053; ANTARES-IV_054; ANTARES-IV_055; ANTARES-IV_056; ANTARES-IV_057; ANTARES-IV_058; ANTARES-IV_059; ANTARES-IV_060; ANTARES-IV_061; ANTARES-IV_062; ANTARES-IV_063; ANTARES-IV_064; ANTARES-IV_065; ANTARES-IV_066; ANTARES-IV_067; ANTARES-IV_068; ANTARES-IV_069; ANTARES-IV_070; ANTARES-IV_071; ANTARES-IV_072; ANTARES-IV_073; ANTARES-IV_074; ANTARES-IV_075; ANTARES-IV_076; ANTARES-IV_077; ANTARES-IV_078; ANTARES-IV_079; ANTARES-IV_080; ANTARES-IV_081; ANTARES-IV_082; ANTARES-IV_083; ANTARES-IV_084; ANTARES-IV_085; ANTARES-IV_086; ANTARES-IV_087; ANTARES-IV_088; ANTARES-IV_089; ANTARES-IV_090; ANTARES-IV_091; ANTARES-IV_092; ANTARES-IV_093; ANTARES-IV_094; ANTARES-IV_095; ANTARES-IV_096; ANTARES-IV_097; ANTARES-IV_098; ANTARES-IV_099; ANTARES-IV_100; ANTARES-IV_101; ANTARES-IV_102; ANTARES-IV_103; ANTARES-IV_104; ANTARES-IV_105; ANTARES-IV_106; ANTARES-IV_107; Biogeochemical Processes in the Oceans and Fluxes; Bottle number; Conductivity; CTD/Rosette; CTD-RO; Date/Time of event; DEPTH, water; Event label; JGOFS; Joint Global Ocean Flux Study; Latitude of event; Longitude of event; Marion Dufresne (1995); Oxygen; Pressure, water; PROOF; Salinity; Temperature, water; Temperature, water, potential
    Type: Dataset
    Format: text/tab-separated-values, 16933 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 15
    Publication Date: 2024-02-01
    Keywords: ANTARES-I_0110; ANTARES-I_0210; ANTARES-I_0220; ANTARES-I_0310; ANTARES-I_0410; ANTARES-I_0420; ANTARES-I_0430; ANTARES-I_0440; ANTARES-I_0510; ANTARES-I_0520; ANTARES-I_0610; ANTARES-I_0620; ANTARES-I_0710; ANTARES-I_0810; ANTARES-I_0820; ANTARES-I_0830; ANTARES-I_0910; ANTARES-I_0920; ANTARES-I_0930; ANTARES-I_1010; ANTARES-I_1020; ANTARES-I_1110; ANTARES-I_1120; ANTARES-I_1210; ANTARES-I_1220; ANTARES-I_1310; ANTARES-I_1320; ANTARES-I_1330; ANTARES-I_1340; ANTARES-I_1410; ANTARES-I_1420; ANTARES-I_1430; ANTARES-I_1510; ANTARES-I_1610; ANTARES-I_1620; ANTARES-I_1720; ANTARES-I_1810; ANTARES-I_1820; ANTARES-I_1910; ANTARES-I_2010; ANTARES-I_2020; ANTARES-I,35MF75_1; Biogeochemical Processes in the Oceans and Fluxes; CTD/Rosette; CTD1,OP1; CTD10,OP39,H1; CTD11,OP41,H1; CTD12,OP48,H2; CTD13,OP50,H2; CTD14,OP53,H3; CTD15,OP55,S1; CTD16,OP57,S1; CTD17,OP61,S1; CTD18,OP65,S2; CTD19,OP67,S2; CTD2,OP4,Antarfix; CTD20,OP69,S2; CTD21,OP73,S3; CTD22,OP75,S3; CTD23,OP79,S4; CTD24,OP80,S4; CTD25,OP82,S5; CTD26,OP83,S5; CTD27,OP87,S6; CTD28,OP89,S6; CTD29,OP93,S6; CTD30,OP95,S6; CTD31,OP102,S7; CTD32,OP104,S7; CTD33,OP107,S7; CTD34,OP115,S8; CTD35,OP119,S10; CTD36,OP121,S10; CTD37,OP125,S8; CTD38,OP128,S9; CTD39,OP131,S9; CTD4,OP6,Antarfix; CTD40,OP135,S9; CTD41,OP138,S12; CTD42,OP140,S12; CTD5,OP20; CTD6,OP27,M3; CTD7,OP31,M3; CTD8,OP32,M3; CTD9,OP36,M3; CTD-RO; DEPTH, water; Event label; JGOFS; Joint Global Ocean Flux Study; Latitude of event; Longitude of event; Marion Dufresne (1972); MD75; Oxygen; Pressure, water; PROOF; Salinity; Temperature, water
    Type: Dataset
    Format: text/tab-separated-values, 477840 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 16
    Publication Date: 2024-02-01
    Keywords: ANTARES-I_0210; ANTARES-I_0220; ANTARES-I_0410; ANTARES-I_0420; ANTARES-I_0430; ANTARES-I_0440; ANTARES-I_0510; ANTARES-I_0520; ANTARES-I_0610; ANTARES-I_0710; ANTARES-I_0810; ANTARES-I_0820; ANTARES-I_0830; ANTARES-I_0910; ANTARES-I_0920; ANTARES-I_1010; ANTARES-I_1020; ANTARES-I_1110; ANTARES-I_1120; ANTARES-I_1210; ANTARES-I_1220; ANTARES-I_1310; ANTARES-I_1320; ANTARES-I_1410; ANTARES-I_1420; ANTARES-I_1510; ANTARES-I_1610; ANTARES-I_1620; ANTARES-I_1720; ANTARES-I_1810; ANTARES-I_1820; ANTARES-I_1910; ANTARES-I_2010; ANTARES-I_2020; ANTARES-I,35MF75_1; Biogeochemical Processes in the Oceans and Fluxes; Bottle number; Conductivity; CTD/Rosette; CTD10,OP39,H1; CTD11,OP41,H1; CTD12,OP48,H2; CTD14,OP53,H3; CTD15,OP55,S1; CTD16,OP57,S1; CTD17,OP61,S1; CTD18,OP65,S2; CTD19,OP67,S2; CTD2,OP4,Antarfix; CTD21,OP73,S3; CTD22,OP75,S3; CTD23,OP79,S4; CTD24,OP80,S4; CTD25,OP82,S5; CTD26,OP83,S5; CTD27,OP87,S6; CTD28,OP89,S6; CTD31,OP102,S7; CTD32,OP104,S7; CTD34,OP115,S8; CTD35,OP119,S10; CTD36,OP121,S10; CTD37,OP125,S8; CTD38,OP128,S9; CTD39,OP131,S9; CTD4,OP6,Antarfix; CTD40,OP135,S9; CTD41,OP138,S12; CTD42,OP140,S12; CTD6,OP27,M3; CTD7,OP31,M3; CTD8,OP32,M3; CTD9,OP36,M3; CTD-RO; Date/Time of event; Density, sigma-theta (0); DEPTH, water; Event label; JGOFS; Joint Global Ocean Flux Study; Latitude of event; Longitude of event; Marion Dufresne (1972); MD75; Oxygen; Oxygen, apparent utilization; Oxygen saturation; Pressure, water; PROOF; Salinity; Temperature, water; Temperature, water, potential
    Type: Dataset
    Format: text/tab-separated-values, 4243 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 17
    Publication Date: 2024-04-20
    Keywords: Aluminium, flux; Barium, flux; Biogeochemical Processes in the Oceans and Fluxes; Calcium, flux; Calculated from dry weight/volume; Carbon, organic, particulate, flux; DATE/TIME; Date/time end; DEPTH, water; Duration, number of days; Flux of total mass; JGOFS; Joint Global Ocean Flux Study; KERFIX; Kerguelen; MOOR; Mooring; Nitrogen, total, flux; PROOF; Sample code/label; Strontium, flux; Time-series station; δ13C, organic carbon; δ15N, organic matter
    Type: Dataset
    Format: text/tab-separated-values, 391 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 18
    Publication Date: 2022-05-25
    Description: Author Posting. © American Meteorological Society, 2014. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Climate 27 (2014): 8185–8204, doi:10.1175/JCLI-D-13-00500.1.
    Description: The East Asian winter monsoon (EAWM) and the North Pacific Oscillation (NPO) constitute two outstanding surface atmospheric circulation patterns affecting the winter sea surface temperature (SST) variability in the western North Pacific. The present analyses show the relationship between the EAWM and NPO and their impact on the SST are nonstationary and regime-dependent with a sudden change around 1988. These surface circulation patterns are tightly linked to the upper-level Ural and Kamchatka blockings, respectively. During the 1973–87 strong winter monsoon epoch, the EAWM and NPO were significantly correlated to each other, but their correlation practically vanishes during the 1988–2002 weak winter monsoon epoch. This nonstationary relationship is related to the pronounced decadal weakening of the Siberian high system over the Eurasian continent after the 1988 regime shift as well as the concomitant positive NPO-like dipole change and its eastward migration in tropospheric circulation over the North Pacific. There is a tight tropical–extratropical teleconnection in the western North Pacific in the strong monsoon epoch, which disappears in the weak monsoon epoch when there is a significant eastward shift of tropical influence and enhanced storm tracks into the eastern North Pacific. A tentative mechanism of the nonstationary relationship between the EAWM and NPO is proposed, stressing the pivotal role played in the above teleconnection by a decadal shift of the East Asian trough resulting from the abrupt decline of the EAWM since the late 1980s.
    Description: G. Pak has been supported from the Brain Korea 21 Project of SNU, for which we are very grateful to K.-R. Kim, and also from the Ministry of Oceans and Fisheries, South Korea (OCCAPA and EAST-I projects). Y.-O. Kwon is supported by the U.S. National Science Foundation Climate and Large-Scale Dynamics program (AGS-1035423) and Department of Energy (DOE) Climate and Environmental Science Division (DESC0007052).
    Description: 2015-05-01
    Keywords: Climate variability ; Interannual variability ; Interdecadal variability ; North Pacific Oscillation
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 19
  • 20
    Publication Date: 2016-10-16
    Description: The North Pacific gyre boundaries are characterized by stark contrasts in physical and biogeochemical properties. Meridional movement of gyre boundaries, influenced by climate change, can therefore exert a large influence on not only marine ecosystems but also on climate. We examine the evidence for wind-driven southward shifts in subsurface temperature, salinity, PO 4 , and O 2 within the Northwest Pacific from the 1950s to the 2000s. Gyre boundary shifts can explain 30 ~ 60% of temperature and salinity trends zonally averaged in the Northwest Pacific, and observed PO 4 and O 2 trends along the 137°E and 144°E meridians. The close tie between the wind-driven shifts in gyre boundaries and the tracer distributions is further supported by results from an eddy-resolving (0.1° × 0.1°) GFDL climate model, suggesting that the physical and biogeochemical properties averaged within the Northwest Pacific gyre boundaries closely follow the latitude changes of the zero Sverdrup stream function with lags of zero to three years. The gyre shift effect on tracer distribution is poorly represented in a coarse resolution (1° × 1°) model due partly to poor representations of fronts and eddies. This study suggests that future changes in Northwest Pacific PO 4 and O 2 content may depend not only on ocean temperature and stratification, but also on the ocean gyre response to winds.
    Print ISSN: 0886-6236
    Electronic ISSN: 1944-9224
    Topics: Biology , Chemistry and Pharmacology , Geography , Geosciences , Physics
    Published by Wiley on behalf of American Geophysical Union (AGU).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...