ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
  • 1
    Publication Date: 2019-07-13
    Description: The Kelvin-Helmholtz Instability (KHI) can drive waves at the magnetopause. These waves can grow to form rolled-up vortices and facilitate transfer of plasma into the magnetosphere. To investigate the persistence and frequency of such waves at the magnetopause we have carried out a survey of all Double Star 1 magnetopause crossings, using a combination of ion and magnetic field measurements. Using criteria originally used in a Geotail study made by Hasegawa et al. (2006) (forthwith referred to as H2006), 17 candidate events were identified from the entire TC-1 mission (covering 623 orbits where the magnetopause was sampled), a majority of which were on the dayside of the terminator. The relationship between density and shear velocity was then investigated, to identify the predicted signature of a rolled up vortex from H2006 and all 17 events exhibited some level of rolled up behavior. The location of the events had a clear dawn-dusk asymmetry, with 12 (71 %) on the post noon, dusk flank suggesting preferential growth in this region.
    Keywords: Space Sciences (General); Geophysics
    Type: GSFC-E-DAA-TN9295 , Annales Geophysicae (ISSN 0992-7689); 30; 6; 1025-1035
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The extent of where magnetic reconnection (MR), the dominant process responsible for energy and plasma transport into the magnetosphere, operates across Earth's dayside magnetopause has previously been only indirectly shown by observations. We report the first direct evidence of X-line structure resulting from the operation of MR at each of two widely separated locations along the tilted, subsolar line of maximum current on Earth's magnetopause, confirming the operation of MR at two or more sites across the extended region where MR is expected to occur. The evidence results from in-situ observations of the associated ion and electron plasma distributions, present within each magnetic X-line structure, taken by two spacecraft passing through the active MR regions simultaneously.
    Keywords: Geophysics
    Type: GSFC.JA.5103.2011 , Physical Review Letters (ISSN 0031-9007); 107; 2; 025004-1 - 025004-6
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: We report a clear transition through a reconnection layer at the low-latitude magnetopause which shows a complete traversal across all reconnected field lines during northwestward interplanetary magnetic field (IMF) conditions. The associated plasma populations confirm details of the electron and ion mixing and the time history and acceleration through the current layer. This case has low magnetic shear with a strong guide field and the reconnection layer contains a single density depletion layer on the magnetosheath side which we suggest results from nearly field-aligned magnetosheath flows. Within the reconnection boundary layer, there are two plasma boundaries, close to the inferred separatrices on the magnetosphere and magnetosheath sides (Ssp and Ssh) and two boundaries associated with the Alfvn waves (or Rotational Discontinuities, RDsp and RDsh). The data are consistent with these being launched from the reconnection site and the plasma distributions are well ordered and suggestive of the time elapsed since reconnection of the field lines observed. In each sub-layer between the boundaries the plasma distribution is different and is centered around the current sheet, responsible for magnetosheath acceleration. We show evidence for a velocity dispersion effect in the electron anisotropy that is consistent with the time elapsed since reconnection. In addition, new evidence is presented for the occurrence of partial reflection of magnetosheath electrons at the magnetopause current layer.
    Keywords: Geophysics
    Type: GSFC-E-DAA-TN9280 , Journal of Geophysical Research: Space Physics; 117; A8; A08205
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-08-14
    Description: We discuss observations of the journey throughout the Solar System of a large interplanetary coronal mass ejection (ICME) that was ejected at the Sun on 14 October 2014. The ICME hit Mars on 17 October, as observed by the Mars Express, Mars Atmosphere and Volatile EvolutioN Mission (MAVEN), Mars Odyssey, and Mars Science Laboratory (MSL) missions, 44 h before the encounter of the planet with the Siding-Spring comet, for which the space weather context is provided. It reached comet 67P/Churyumov-Gerasimenko, which was perfectly aligned with the Sun and Mars at 3.1 AU, as observed by Rosetta on 22 October. The ICME was also detected by STEREO-A on 16 October at 1 AU, and by Cassini in the solar wind around Saturn on the 12 November at 9.9 AU. Fortuitously, the New Horizons spacecraft was also aligned with the direction of the ICME at 31.6 AU. We investigate whether this ICME has a nonambiguous signature at New Horizons. A potential detection of this ICME by Voyager 2 at 110-111 AU is also discussed. The multispacecraft observations allow the derivation of certain properties of the ICME, such as its large angular extension of at least 116deg, its speed as a function of distance, and its magnetic field structure at four locations from 1 to 10 AU. Observations of the speed data allow two different solar wind propagation models to be validated. Finally, we compare the Forbush decreases (transient decreases followed by gradual recoveries in the galactic cosmic ray intensity) due to the passage of this ICME at Mars, comet 67P, and Saturn.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN51107 , Journal of Geophysical Research: Space Physics (ISSN 2169-9402) (e-ISSN 2169-9402); 122; 8; 7865-7890
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...