ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 1
    Publication Date: 2013-08-31
    Description: The disturbance field induced by a small isolated vortex in a compressible shear layer is studied using direct simulation in a convected frame. The convective Mach number, M(sub c), is varied from 0.1 to 1.25. The vorticity perturbation is rapidly sheared by the mean velocity gradient. The resulting disturbance pressure field is observed to decrease both in magnitude and extent with increasing M(sub c), becoming a narrow transverse zone for M(sub c) greater than 0.8. A similar trend is seen for the perturbation velocity magnitude and for the Reynolds shear stress. By varying the vortex size, we verified that the decrease in perturbation levels is due to the mean-flow Mach number and not the Mach number across the vortex. At high M(sub c), the vortex still communicates with the edges of the shear layer, although communication in the mean-flow direction is strongly inhibited. The growth rate of perturbation kinetic energy declines with M(sub c) primarily due to the reduction in shear stress. For M(sub c) greater than or equal to 0.6, the pressure dilatation also contributes to the decrease of growth rates. Calculation of the perturbation field induced by a vortex doublet revealed the same trends as in the single-vortex case, illustrating the insensitivity of the Mach-number effect to the specific form of initial conditions.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: Stanford Univ., Studying Turbulence Using Numerical Simulation Databases. 4: Proceedings of the 1992 Summer Program; p 259-276
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Jet spreading enhancement with a certain coannular nozzle configuration has been explored. When the outer nozzle is flaired (i.e., made convergent-divergent) the ensuing jet spreads faster than the case where the outer nozzle is convergent. The spreading enhancement is most pronounced when the outer flow is run near 'transonic' condition, in an overexpanded state. Under this condition, the increased spreading takes place regardless of the operating conditions of the inner jet. This observation, first made in a small scale facility, has been confirmed and studied in some detail in a larger-scale facility. Results of the latter experiment are presented in this paper. The spreading increase is shown to be substantial and comparable to or better than that achieved by a lobed nozzle. Estimates based on idealized flow indicate that there is an accompanying thrust penalty - the actual penalty is expected to be less than the estimate but remains undetermined at this time. In both the earlier and the present experiments, the spreading increase has often been found to accompany a flow resonance. The nature of this resonance is addressed in this paper. It is shown that the spreading increase takes place even if the resonance is absent. Thus, flow excitation due to the resonance is ruled out as the underlying mechanism. While the complete mechanism remains unclear, it is conjectured that pressure gradients near the nozzle, characteristic of overexpanded flow, are at the root of the phenomenon.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: Aerospace Sciences; Jan 10, 2000 - Jan 13, 2000; Reno, NV; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...